Selected solutions for worksheets from Math 53 (U.C. Berkeley's multivar. calc. course).

12. The Chain Rule

Questions

1.

Figure 10(a) encapsulates the information that g is a function of x and $y ; x$ and y are both functions of t. In symbols:

$$
\begin{aligned}
& g(x, y) \\
& x(t) \\
& y(t) \\
\Rightarrow & \frac{d g}{d t}=\frac{\partial g}{\partial x} \frac{d x}{d t}+\frac{\partial y}{\partial t} \frac{d y}{d t}
\end{aligned}
$$

2.

(a)

Using the chain rule,

$$
\frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u}
$$

and similarly

$$
\frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v}
$$

(b)

Again using the chain rule,

$$
\frac{d x}{d t}=\frac{\partial x}{\partial u} \frac{d u}{d t}+\frac{\partial x}{\partial v} \frac{d v}{d t}
$$

and similarly

$$
\frac{d y}{d t}=\frac{\partial y}{\partial u} \frac{d u}{d t}+\frac{\partial y}{\partial v} \frac{d v}{d t}
$$

Note: we write $d v / d t$ instead of $\partial v / \partial t$ because v is a single variable function with respect to t. (And same for u.)
(c)

By the chain rule

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}
$$

At this point, we can plug in the expression we found for $d x / d t$ and $d y / d t$ from part (b). The final answer is

$$
\begin{aligned}
\frac{d z}{d t} & =\frac{\partial z}{\partial x}\left(\frac{\partial x}{\partial u} \frac{d u}{d t}+\frac{\partial x}{\partial v} \frac{d v}{d t}\right)+\frac{\partial z}{\partial y}\left(\frac{\partial y}{\partial u} \frac{d u}{d t}+\frac{\partial y}{\partial v} \frac{d v}{d t}\right) \\
& =\frac{\partial z}{\partial x} \frac{\partial x}{\partial u} \frac{d u}{d t}+\frac{\partial z}{\partial x} \frac{\partial x}{\partial v} \frac{d v}{d t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u} \frac{d u}{d t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v} \frac{d v}{d t}
\end{aligned}
$$

See Figure 1 for the dependency diagram.

Figure 1: Dependency diagram for 2(c)

Problems

1.

(a)

By the chain rule

$$
\begin{aligned}
\frac{d T}{d t} & =\frac{\partial T}{\partial x} \frac{d x}{d t}+\frac{\partial T}{\partial y} \frac{d y}{d t} \\
& =\left(2 x e^{y}-y^{3}\right)(-\sin t)+\left(x^{2} e^{y}-3 x y^{2}\right)(\cos t) \\
& =-2 \cos t \sin t e^{\sin t}+\sin ^{4} t+\cos ^{3} t e^{\sin t}-3 \cos ^{2} t \sin ^{2} t
\end{aligned}
$$

(where in the last step, we substituted $x=\cos t$ and $y=\sin t$.)
(b)

To find T explicitly as a function of t, we substitute in for x and y :

$$
T(t)=(\cos t)^{2} e^{\sin t}-(\cos t)(\sin t)^{3}=\cos ^{2} t e^{\sin t}-\cos t \sin ^{3} t
$$

Differentiating the above with respect to t, we have

$$
\begin{aligned}
\frac{d T}{d t} & =-2 \cos t \sin t e^{\sin t}+\cos ^{2} t e^{\sin t} \cos t-3 \cos ^{2} t \sin ^{2} t+\sin ^{4} t \\
& =-2 \cos t \sin t e^{\sin t}+\sin ^{4} t+\cos ^{3} t e^{\sin t}-3 \cos ^{2} t \sin ^{2} t
\end{aligned}
$$

Note that the answers from parts (a) and (b) match.
2.

We have a particle in \mathbb{R}^{3} that stays on the surface $x y+y z+x z=0$. The path of the particle is defined by some functions in terms of t, say $(x(t), y(t), z(t))$. The condition that the particle stays on the surface implies that for all t, the particle's position satisfies the equation of the surface, i.e. $x(t) y(t)+y(t) z(t)+x(t) z(t)=0$. Let's differentiate this equation with respect to t :

$$
\frac{d x}{d t} y+x \frac{d y}{d t}+\frac{d y}{d t} z+y \frac{d z}{d t}+\frac{d x}{d t} z+x \frac{d z}{d t}=0
$$

Since the particle is at $(2,-1,2)$, we can substitute these values into the above equation. The condition that the point is moving along the surface parallel to the $x z$ plane is the condition that $d y / d t=0$:

$$
\frac{d x}{d t}(-1)+(-1) \frac{d z}{d t}+\frac{d x}{d t}(2)+(2) \frac{d z}{d t}=0
$$

Rearranging this equation, we see that

$$
\frac{d z}{d x}=\frac{\frac{d z}{d t}}{\frac{d x}{d t}}=-1
$$

