Selected solutions for worksheets from Math 53 (U.C. Berkeley's multivariable calculus course).

\#10. Partial Derivatives

Questions

1.

(a) $f_{x}(1,2)=-2, f_{y}(1,2)=-4$.
(b) This is a downward facing paraboloid, with circular cross sections. To sketch the slopes, think of slicing the graph at the planes $y=2$ and $x=1$.
(c) The level curve is a circle. To predict steepness we can see how close or far apart the level curves moving in the x and y direction.
2.
(a) f_{x} exists everywhere except the y-axis but including the origin.
(b) f_{y} exists everywhere except the x-axis but including the origin.
(c) f is continuous everywhere except the x and y axes.
3.
(a) These are $y z, x z, x y$ respectively.
(b) We have a box of dimensions x, y, z. Imagine fixing the $x y$ face, and allowing z to increase 1 unit per unit time. Thus in one unit of time the volume of the box has increased an amount $x y$, i.e. the change in V with respect to z is $x y$. Similarly for the other two partial derivatives.

Problems

1.

(a) Upward facing cone.
(b) If we take a plane at $x=$ constant or $y=$ constant, where the constant is not zero, then it intersects the cone in a curve which has a unique tangent line, with slope corresponding to the partial derivative. At $x=0$ or $y=0$ though, we don't have a tangent line.
(c) $\partial f / \partial x=x / \sqrt{x^{2}+y^{2}}$ is continuous everywhere except at the origin, as expected. Similarly for $\partial f / \partial y$.
2.
(a)

$$
\begin{aligned}
& \partial f / \partial x=\frac{x^{4} y+4 x^{2} y^{3}-y^{5}}{\left(x^{2}+y^{2}\right)^{2}} \\
& \partial f / \partial y=\frac{x^{5}-4 x^{3} y^{2}-x y^{4}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

(b) Both zero. For example

$$
\lim _{x \rightarrow 0} \frac{1}{x}(f(x, 0)-f(0,0))=\lim _{x \rightarrow 0}\left(\frac{x y\left(x^{2}-y^{2}\right)}{x\left(x^{2}+y^{2}\right)}\right)_{y=0}=0
$$

(c) Yes. Converting into polars gives $\partial f / \partial x=r\left(\cos ^{4} \theta \sin \theta+4 \cos ^{2} \theta \sin ^{3} \theta-\sin ^{5} \theta\right)$, since the r 's cancel. The expression in parentheses is bounded, so as r tends to zero, the whole expression tends to zero. Thus $\lim _{(x, y) \rightarrow(0,0)} \partial f / \partial x=\frac{\partial f}{\partial x}(0,0)=0$. Similarly for $\partial f / \partial y$. And away from the origin we already have continuity from the expressions for the partial derivatives above. Thus the partial derivatives are continuous everywhere.

