Selected solutions for worksheets from Math 53 (U.C. Berkeley's multivar. calc. course).

1. Curves Defined by Parametric Equations

Problems

1.

(b) Rearrange the parametric equations for x and y as

$$
\cos \theta=\frac{x}{a}, \sin \theta=\frac{y}{b}
$$

and use the identity $\cos ^{2} \theta+\sin ^{2} \theta=1$ to write the cartesian equation

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1
$$

This describes an ellipse with semi-major axis a and semi-minor axis b.
2.
(a) Consider $x+y$ and $x-y$,

$$
\begin{aligned}
& x+y=4 \cos t \\
& x-y=-2 \sin t
\end{aligned}
$$

then, rewrite the above as $\cos t=(x+y) / 4$ and $\sin t=-(x-y) / 2$, and use the identity $\cos ^{2} t+\sin ^{2} t=1$ to write the cartesian equation

$$
\left(\frac{x+y}{4}\right)^{2}+\left(\frac{x-y}{2}\right)^{2}=1
$$

(b) Substitute $x=u+v$ and $y=u-v$ into the cartesian equation from (a):

$$
\begin{aligned}
& \left(\frac{2 u}{4}\right)^{2}+\left(\frac{2 v}{2}\right)^{2}=1 \\
\Rightarrow & \left(\frac{u}{2}\right)^{2}+\left(\frac{v}{1}\right)^{2}=1
\end{aligned}
$$

This is the equation of an ellipse.
3.
(a) Consider

$$
\begin{aligned}
& x+y=t+\frac{1}{t}+t-\frac{1}{t}=2 t \\
& x-y=t+\frac{1}{t}-\left(t-\frac{1}{t}\right)=\frac{2}{t}
\end{aligned}
$$

Therefore,

$$
(x+y)(x-y)=x^{2}-y^{2}=4
$$

This is a hyperbola, with branches opening along the x-axis.
(b) $t \in(-\infty, 0)$ gives the left branch of the hyperbola; $t \in(0, \infty)$ gives the right branch of the hyperbola. To see this, notice that when $t<0, x<0$, and when $t>0, x>0$. The parameterization is undefined for $t=0$.
(c) D traces out only the right branch of the hyperbola, because for any value of $t, x>0$.

Additional Problems

1.

The problem specifies that the helix passes through $(0,0,1)$ and $(1,0,1)$. One possible parameterization is

$$
\begin{aligned}
& x(t)=\frac{t}{2 \pi} \\
& y(t)=\sin t \\
& z(t)=\cos t
\end{aligned}
$$

which passes through $(0,0,1)$ at $t=0$, and passes through $(1,0,1)$ at $t=2 \pi$.

