Problem 26, §16.7

We're trying to integrate $\mathbf{F}(x, y, z)=(x z, x, y)$ over S, the hemisphere of radius 5 centered at the origin in the positive y half of \mathbb{R}^{3}, oriented in the positive y direction.

In my 8 AM section, I tried to use y and θ (in the $x z$ plane) in section. But this doesn't work, since r depends on $y . S$ is a sphere of radius 5 , so we have the following relationship between r (in the $x z$ plane) and y :

$$
\left(x^{2}+z^{2}\right)+y^{2}=25 \Leftrightarrow r^{2}+y^{2}=25 \Leftrightarrow r=\sqrt{25-y^{2}}
$$

therefore the parameterization I should have used is

$$
\mathbf{r}(y, \theta)=\left(\sqrt{25-y^{2}} \cos \theta, y, \sqrt{25-y^{2}} \sin \theta\right)
$$

but this is kind of nasty to calculate derivatives and cross products for. We use $\mathbf{r}_{y} \times \mathbf{r}_{\theta}$ because it gives the correct orientation. We'd get

$$
\mathbf{r}_{y} \times \mathbf{r}_{\theta}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-\frac{y}{\sqrt{25-y^{2}}} \cos \theta & 1 & -\frac{y}{\sqrt{25-y^{2}}} \sin \theta \\
-\sqrt{25-y^{2}} \sin \theta & 0 & \sqrt{25-y^{2}} \cos \theta
\end{array}\right|=\left(\sqrt{25-y^{2}} \cos \theta, y, \sqrt{25-y^{2}} \sin \theta\right)
$$

giving us a full integral of

$$
\begin{aligned}
\iint_{S} \mathbf{F}(x, y, z) \cdot d \mathbf{S}= & \int_{0}^{2 \pi} \int_{0}^{5}\left(\left(25-y^{2}\right) \cos \theta \sin \theta, \sqrt{25-y^{2}} \cos \theta, y\right) \\
& \cdot\left(\sqrt{25-y^{2}} \cos \theta, y, \sqrt{25-y^{2}} \sin \theta\right) d y d \theta \\
= & \int_{0}^{2 \pi} \int_{0}^{5}\left(25-y^{2}\right)^{\frac{3}{2}} \cos ^{2} \theta \sin \theta+\sqrt{25-y^{2}} y \cos \theta+\sqrt{25-y^{2}} y \sin \theta d y d \theta \\
= & 0
\end{aligned}
$$

because every term contains a factor of a trig function, cosine or sine, integrated from zero to 2π, giving zero.

I could have done the problem that way. However, I think when spheres are involved, choosing a parameterization based on spherical coordinates might be a better idea. While it may be difficult to do all the trig derivatives and manipulations, it is easier to be confident that your parameterization is correct. In this case, $\rho=5$, so we can use

$$
\mathbf{r}(\phi, \theta)=(5 \sin \phi \cos \theta, 5 \sin \phi \sin \theta, 5 \cos \phi)
$$

We use $\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}$ because it gives the correct orientation. The cross product term is

$$
\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}=\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
5 \cos \phi \cos \theta & 5 \cos \phi \sin \theta & -5 \sin \phi \\
-5 \sin \phi \cos \theta & 5 \sin \phi \cos \theta & 0
\end{array}\right)=\left(25 \sin ^{2} \phi \cos \theta,-25 \sin ^{2} \phi \cos \theta, 25 \sin \phi \cos \theta\right)
$$

giving us a full integral of

$$
\begin{aligned}
\iint_{S} \mathbf{F}(x, y, z) \cdot d \mathbf{S} & =\int_{0}^{\pi} \int_{0}^{\pi}(25 \sin \phi \cos \phi \cos \theta, 5 \sin \phi \cos \theta, 5 \sin \phi \sin \theta) \\
& \cdot\left(25 \sin ^{2} \phi \cos \theta,-25 \sin ^{2} \phi \cos \theta, 25 \sin \phi \cos \theta\right) d \phi d \theta \\
& =\int_{0}^{\pi} \int_{0}^{\pi} 25 \sin ^{3} \phi \cos \phi \cos ^{2} \theta-125 \sin ^{3} \phi \cos ^{2} \theta+125 \sin ^{2} \phi \sin \theta \cos \theta d \phi d \theta \\
& =0
\end{aligned}
$$

because every term integrates to something with a factor of sine, which, when evaluated at zero and π gives zero.

There is another way to solve this problem, using symmetries. Note that

$$
\mathbf{F}(x, y, z)=(x z, x, y) \text { and } \mathbf{n}(x, y, z)=\frac{(x, y, z)}{5} \text { so } \mathbf{F}(x, y, z) \cdot \mathbf{n}(x, y, z)=\frac{\left(x^{2} z, x y, y z\right)}{5}
$$

where \mathbf{n} denotes the unit normal to S. Therefore

$$
\begin{aligned}
\mathbf{F}(-x, y,-z)=(x z,-x, y) \text { and } \mathbf{n}(-x, y,-z) & =\frac{(-x, y,-z)}{5} \\
\text { so } \mathbf{F}(-x, y,-z) \cdot \mathbf{n}(-x, y,-z)=\frac{\left(-x^{2} z,-x y,-y z\right)}{5} & =-\mathbf{F}(x, y, z) \cdot \mathbf{n}(x, y, z)
\end{aligned}
$$

Since sending (x, y, z) to $(-x, y,-z)$ consists of a rotation by π in the $x z$ plane, and S is symmetric under rotations, (x, y, z) and $(-x, y,-z)$ occur in canceling pairs, so the integral will be zero.

