Limit Laws

Let $f(x)$ be a function and a a number. We say that the number L is the limit of $f(x)$ as x approaches a when $f(x)$ can be made arbitrarily close to L for all x sufficiently close (but not equal) to a. In this case, we write

$$
\lim _{x \rightarrow a} f(x)=L
$$

Rephrased, this means that I can make $|f(x)-L|$ as small as I want by choosing an x very close to a. This is because " $f(x)$ is close to L " can be formalized by saying " $|f(x)-L|$ is small."

If $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both exist, the following are true.
I) If k is a number, $\lim _{x \rightarrow a} k \cdot f(x)=k \cdot \lim _{x \rightarrow a} f(x)$.

Understanding: If $\lim _{x \rightarrow a} f(x)=L$, then I can make $|f(x)-L|$ as small as I want by looking only at x very close to a. I claim that I can also make $|k \cdot f(x)-k \cdot L|$ as small as I want. This is possible because

$$
|k \cdot f(x)-k \cdot L|=k \cdot|f(x)-L|
$$

Therefore if I want to make $|k \cdot f(x)-k \cdot L|$ smaller than, for example, 2 , I can do this by looking at x so close to a that $|f(x)-L|$ smaller than $\frac{2}{k}$, because then I get

$$
|k \cdot f(x)-k \cdot L|=k \cdot|f(x)-L|<k \cdot \frac{2}{k}=2
$$

II) If r is a positive number, and $f(x)^{r}$ is defined for $x \neq a, \lim _{x \rightarrow a}[f(x)]^{r}=\left[\lim _{x \rightarrow a} f(x)\right]^{r}$.

Understanding: Unfortunately, this requires some more advanced math.
III) $\lim _{x \rightarrow a}[f(x)+g(x)]=\left[\lim _{x \rightarrow a} f(x)\right]+\left[\lim _{x \rightarrow a} g(x)\right]$.

Understanding: If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$ then

$$
|f(x)+g(x)-(L+M)| \leq|f(x)-L|+|g(x)-M|
$$

Therefore if I want to make $|f(x)+g(x)-(L+M)|$ smaller than, for example, 2 , I can do this by looking at x so close to a that both $|f(x)-L|$ and $|g(x)-L|$ smaller than 1 , because then I get

$$
|f(x)+g(x)-(L+M)| \leq|f(x)-L|+|g(x)-M|=1+1=2
$$

Note: I did not justify why $|f(x)+g(x)-(L+M)| \leq|f(x)-L|+|g(x)-M|$. This requires some thinking. If you want to try to understand this yourself, first start with this sub-problem: if a and b are numbers, why is $|a+b| \leq|a|+|b|$? Hint: do it by cases (a and b both positive, both negative, and one positive, the other negative.) You could also research "triangle inequality."
IV) $\lim _{x \rightarrow a}[f(x)-g(x)]=\left[\lim _{x \rightarrow a} f(x)\right]-\left[\lim _{x \rightarrow a} g(x)\right]$.

Understanding: You can understand this using rules I and III; think about how.
V) $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\left[\lim _{x \rightarrow a} f(x)\right] \cdot\left[\lim _{x \rightarrow a} g(x)\right]$

Understanding: If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$ then

$$
\begin{aligned}
|f(x) g(x)-L M| & =|f(x) g(x)-L g(x)+L g(x)-L M| \\
& \leq|f(x) g(x)-L g(x)|+|L g(x)-L M| \\
& =|g(x)| \cdot|f(x)-L|+|L| \cdot|g(x)-M|
\end{aligned}
$$

For example, say we want to get $|f(x) g(x)-L M|<2$. It is possible to look only at x close enough to a to make $|g(x)-M|$ very small; say we make it smaller than $\frac{1}{|L|}$. In that case, $|g(x)|$ can be at most $\frac{1}{|L|}+|M|$. I can also look only at x close enough to a to make $|f(x)-L|$ smaller than $\frac{1}{\frac{1}{L \mid}+|M|}$. Putting it all together, we get

$$
\begin{aligned}
|f(x) g(x)-L M| & \leq|g(x)| \cdot|f(x)-L|+|L| \cdot|g(x)-M| \\
& <\left(\frac{1}{|L|}+|M|\right)\left(\frac{1}{\frac{1}{|L|}+|M|}\right)+|L| \cdot \frac{1}{|L|} \\
& =1+1=2
\end{aligned}
$$

Note that in the step with the \leq I again used the fact that $|a+b| \leq|a|+|b|$, which I used for Limit Law III.
VI) If $\lim _{x \rightarrow a} g(x) \neq 0$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$.

Understanding: You can understand this using rules II and V; think about how.
VII) Limit of a Polynomial If $p(x)$ is a polynomial, then $\lim _{x \rightarrow a} p(x)=p(a)$.

Understanding: You can understand this using rules I, II, and III, and the fact that $\lim _{x \rightarrow a} x=a$; think about how.
VIII) Limit of a Rational Function If $p(x)$ and $q(x)$ are polynomials, and $q(a) \neq 0$, then $\lim _{x \rightarrow a} \frac{p(x)}{q(x)}=\frac{p(a)}{q(a)}$.

Understanding: You can understand this using rules VI and VII; think about how.

Differentiation Rules

If a function is differentiable at $x=a$, then it is continuous at $x=a$. If a function is not continuous at $x=a$, then it is not differentiable at $x=a$. We say a function is continuous if it is continuous for all values of x; similarly, we say function is differentiable if it is differentiable for all values of x.

1) Constant-multiple rule: if k is a number, $\frac{d}{d x}[k \cdot f(x)]=k \cdot \frac{d}{d x} f(x)=k \cdot f^{\prime}(x)$.

Understanding: Use the three-step method on $h(x)=k \cdot f(x)$.
2) Sum rule: $\frac{d}{d x}[f(x)+g(x)]=\left[\frac{d}{d x} f(x)\right]+\left[\frac{d}{d x} g(x)\right]=f^{\prime}(x)+g^{\prime}(x)$.

Understanding: Use the three-step method on $h(x)=f(x)+g(x)$.
3) General power rule: if r is any number, $\frac{d}{d x} f(x)^{r}=r \cdot f(x)^{r-1} \cdot \frac{d}{d x} f(x)=r \cdot f(x)^{r-1} \cdot f^{\prime}(x)$.

Understanding: What is the derivative? It is the limit of $\frac{\text { change in } f(x)}{\text { change in } x}$ as the size of your change in x gets very small. We can think of the generalized power rule as a nest of functions: inside, some $f(x)$, and outside, some function $g(y)=y^{r}$ for some number r. Then when I want to think about $f(x)^{r}, \mathrm{I}$ can instead think about the function $g(f(x))$. The derivative of $g(f(x))$ the limit of $\frac{\text { change in } g(f(x))}{\text { change in } x}$ as the size of your change in x gets very small.

However, I an add another factor:

$$
\frac{\text { change in } g(f(x))}{\text { change in } x}=\frac{\text { change in } g(f(x))}{\text { change in } f(x)} \cdot \frac{\text { change in } f(x)}{\text { change in } x}
$$

because you can think of them as equal by canceling the "change in $f(x)$ " parts.

