1.7: Random Derivative Knowledge

One can think of the derivative f'(a) as the **rate of change** of f(x) at x = a. Alternately, the change in f(x) per one unit change in x at x = a is given by f'(a).

The **marginal cost** of producing *a* units of a given item is the cost of producing the a + 1st item. The derivative C'(x) of a cost function C(x) is a function for the marginal cost. One can similarly talk about **marginal revenue** and **marginal profit**.

Problems

- (1) Compute:
 - (a) $\frac{d}{ds}f(s,t)$ where $f(s,t) = s^3 + 3st + t^{-5}$.
 - (b) y'' where $y = x^5 + 4(x+3)^2$.
 - (c) $\frac{d^2}{dx^2}xy + 2xy^4 + 9(2x+2)^3|_{x=-1}$.
- (2) A fundraiser for the Berkeley Math Department is bringing in $100 \frac{1}{3}x^2$ dollars on day x from the start of the fundraiser. What is the rate of change in dollars brought in on the 20th day?
- (3) A cost function for calculus textbook production is given by $C(x) = 3x^{\frac{3}{4}}$, which is the cost in dollars of producing x textbooks. What is the cost of producing the tenth textbook?

1.8: Derivative as a Rate of Change

The average rate of change of f(x) over the interval $a \le x \le b$ is given by

$$\frac{f(b) - f(a)}{b - a}$$

The instantaneous rate of change of f(x) at x = a is given by f'(a).

If the interval under consideration is small, we can approximate f by

$$f(a+h) - f(a) \approx f'(a) \cdot h$$

We can understand this by setting h = b - a in the limit definition of the derivative.

Problems

- (1) Let $s(t) = 3t^2 + .5t$ be the position of an object moving in a straight line. What is the average velocity of the object between t = 1 and t = 3? What are the velocity and acceleration at t = 2?
- (2) Let $d(x) = 4x^{\frac{1}{2}}$ be the position of an object moving in a straight line from d(0) = 0. Will the object turn around? If so, give two values $a_0 < a_1$ for which $d(a_0) > d(a_1)$.
- (3) Let $d(x) = (x 2)^3 + 3x$ be the position of an object moving in a straight line from d(0) = 0. Will the object slow down? If so, give two values $a_0 < a_1$ for which the velocity at a_1 is less than the velocity at a_0 .