1.7: Random Derivative Knowledge

One can think of the derivative $f^{\prime}(a)$ as the rate of change of $f(x)$ at $x=a$. Alternately, the change in $f(x)$ per one unit change in x at $x=a$ is given by $f^{\prime}(a)$.

The marginal cost of producing a units of a given item is the cost of producing the $a+1$ st item. The derivative $C^{\prime}(x)$ of a cost function $C(x)$ is a function for the marginal cost. One can similarly talk about marginal revenue and marginal profit.

Problems

(1) Compute:
(a) $\frac{d}{d s} f(s, t)$ where $f(s, t)=s^{3}+3 s t+t^{-5}$.
(b) $y^{\prime \prime}$ where $y=x^{5}+4(x+3)^{2}$.
(c) $\frac{d^{2}}{d x^{2}} x y+2 x y^{4}+\left.9(2 x+2)^{3}\right|_{x=-1}$.
(2) A fundraiser for the Berkeley Math Department is bringing in $100-\frac{1}{3} x^{2}$ dollars on day x from the start of the fundraiser. What is the rate of change in dollars brought in on the 20th day?
(3) A cost function for calculus textbook production is given by $C(x)=3 x^{\frac{3}{4}}$, which is the cost in dollars of producing x textbooks. What is the cost of producing the tenth textbook?

1.8: Derivative as a Rate of Change

The average rate of change of $f(x)$ over the interval $a \leq x \leq b$ is given by

$$
\frac{f(b)-f(a)}{b-a}
$$

The instantaneous rate of change of $f(x)$ at $x=a$ is given by $f^{\prime}(a)$.
If the interval under consideration is small, we can approximate f by

$$
f(a+h)-f(a) \approx f^{\prime}(a) \cdot h
$$

We can understand this by setting $h=b-a$ in the limit definition of the derivative.

Problems

(1) Let $s(t)=3 t^{2}+.5 t$ be the position of an object moving in a straight line. What is the average velocity of the object between $t=1$ and $t=3$? What are the velocity and acceleration at $t=2$?
(2) Let $d(x)=4 x^{\frac{1}{2}}$ be the position of an object moving in a straight line from $d(0)=0$. Will the object turn around? If so, give two values $a_{0}<a_{1}$ for which $d\left(a_{0}\right)>d\left(a_{1}\right)$.
(3) Let $d(x)=(x-2)^{3}+3 x$ be the position of an object moving in a straight line from $d(0)=0$. Will the object slow down? If so, give two values $a_{0}<a_{1}$ for which the velocity at a_{1} is less than the velocity at a_{0}.

