Review: Secant Definition of the Derivative

The derivative of a function $f(x)$ at a is called $f^{\prime}(a)$ and is the slope of the graph of $f(x)$ at $x=a$. This is also the slope of the tangent line to the graph of $f(x)$ at $(a, f(a))$.

The three step method for calculating $f^{\prime}(x)$ is as follows. Example: $f(x)=x^{2}+x, x=2$.

1) Write $\frac{f(x+h)-f(x)}{h}$ using your function f. Example: $\frac{\left[(x+h)^{2}+(x+h)\right]-\left[x^{2}+x\right]}{h}$.
2) Simplify. Example: $\frac{f(x+h)-f(x)}{h}=2 x+h+1$.
3) Take the limit as h approaches zero. This will give you $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$. Example: $2 x+1$.

Problems

(1) Use the three-step method for calculating $f^{\prime}(x)$, where $f(x)=3 x^{2}+x+5$. Draw the associated secant line picture.
(2) Use the three-step method for calculating $f^{\prime}(x)$, where $f(x)=2 x+\frac{1}{x^{2}}$. Draw the associated secant line picture.

1.4: Limit Rules

If $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both exist, the following are true.
I) If k is a number, $\lim _{x \rightarrow a} k \cdot f(x)=k \cdot \lim _{x \rightarrow a} f(x)$.
II) If r is a positive number, and $f(x)^{r}$ is defined for $x \neq a$ (counterexample: $f(x)=-x^{2}$ and $r=\frac{1}{2}$ does NOT work), $\lim _{x \rightarrow a}[f(x)]^{r}=\left[\lim _{x \rightarrow a} f(x)\right]^{r}$.
III) $\lim _{x \rightarrow a}[f(x)+g(x)]=\left[\lim _{x \rightarrow a} f(x)\right]+\left[\lim _{x \rightarrow a} g(x)\right]$.
IV) $\lim _{x \rightarrow a}[f(x)-g(x)]=\left[\lim _{x \rightarrow a} f(x)\right]-\left[\lim _{x \rightarrow a} g(x)\right]$. This follows from I and III; how?
V) $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\left[\lim _{x \rightarrow a} f(x)\right] \cdot\left[\lim _{x \rightarrow a} g(x)\right]$
VI) If $\lim _{x \rightarrow a} g(x) \neq 0$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$. (Counterexample: $f(x)=x+5, g(x)=x+3$, and $a=-3$ does NOT work.)
VII) Limit of a Polynomial If $p(x)$ is a polynomial, then $\lim _{x \rightarrow a} p(x)=p(a)$.
VIII) Limit of a Rational Function If $p(x)$ and $q(x)$ are polynomials, and $q(a) \neq 0$, then $\lim _{x \rightarrow a} \frac{p(x)}{q(x)}=\frac{p(a)}{q(a)}$.

Problems

(1) Come up with examples for the above limit rules: I, III, VI, VII. An example consists of an appropriate $f(x), g(x)$, and x, and possibly a k or r or $p(x)$ or $q(x)$ if necessary.
(2) Come up with examples for the above limit rules: II, IV, V, VIII. An example consists of an appropriate $f(x), g(x)$, and x, and possibly a k or r or $p(x)$ or $q(x)$ if necessary.
(3) Compute the following limits:
(a) $\lim _{x \rightarrow 3} \frac{x^{2}+6 x+9}{x+3}$
(b) $\lim _{x \rightarrow 3} 1-(x+1)^{\frac{1}{2}}$
(4) Compute the following limits:
(a) $\lim _{x \rightarrow 0} \frac{\left(x^{2}-4\right)(2 x+1)}{x+2}$
(b) $\lim _{x \rightarrow 0} 2 x+\frac{1}{x}$

1.5: Continuity and Differentiability

A function $f(x)$ is continuous at \boldsymbol{a} if $f(a)=\lim _{x \rightarrow a} f(x)$.
A function $f(x)$ is differentiable at \boldsymbol{a} if the limit $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ exists.
If $f(x)$ is differentiable at a then $f(x)$ is continuous at a. If $f(x)$ is not continuous at a then $f(x)$ is not differentiable at a.

Problems

(1) $f(x)=\left\{\begin{array}{l}\sqrt{x-3} \text { when } x \geq 3 \\ x-3 \text { when } x<3\end{array}\right.$ Is f continuous at $x=3$? Is f differentiable at $x=3$?
(2) $f(x)=\left\{\begin{array}{l}(x-1)^{3} \text { when } x \leq 0 \\ (x-1)^{2} \text { when } x>0\end{array}\right.$. Is f continuous at $x=1$? Is f differentiable at $x=1$?
(3) $f(x)=\frac{x^{2}(x+2)}{x^{2}-4}$. Is f continuous at $x=-2$? If not, how could you define f at $x=-2$ in a way that makes f continuous?

1.6: Differentiation Rules

Constant-multiple rule: if k is a number, $\frac{d}{d x}[k \cdot f(x)]=k \cdot \frac{d}{d x} f(x)$.
Sum rule: $\frac{d}{d x}[f(x)+g(x)]=\left[\frac{d}{d x} f(x)\right]+\left[\frac{d}{d x} g(x)\right]$.
General power rule: if r is any number, $\frac{d}{d x} f(x)^{r}=r \cdot f(x)^{r-1} \cdot \frac{d}{d x} f(x)$.

Problems

(1) Come up with examples for all of the above differentiation rules.
(2) Differentiate $f(x)=4 x^{\frac{1}{2}}+\left(x^{3}-2\right)^{2}$ without using difference quotients. Show which rules you use at each step.
(3) Differentiate $f(x)=\sqrt[3]{(2 x+3)^{2}+x}$ without using difference quotients. Show which rules you use at each step.

