1.2 Review

(1) Draw a graph on a grid (as in homework problems 1 and 3) with a point P at which the graph has slope 0 , and where the graph does not have slope zero for any other point besides P. Do the same for slopes $\frac{3}{4}$ and -2 .
(2) Find the points on the graph of $y=x^{3}$ where the tangent line is parallel to the line $-3 x+4 y=12$.

1.3

(1) Differentiate the following:
(a) x^{4}
(b) $\frac{1}{\sqrt{x^{3}}}$
(c) x^{-2}
(d) $x^{\frac{1}{3}}$
(2) Find the equation of the tangent line to the graph of $f(x)=\frac{1}{x^{\frac{3}{2}}}$ at $\left(4, \frac{1}{8}\right)$.
(3) Let $f(x)=x^{3}+2 x$. Calculate $f^{\prime}(x)$ using difference quotients, i.e.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

(4) Is there any point where the tangent line to the graph of $f(x)=x^{3}+2 x$ is horizontal? Why or why not?
1.4
(1) Determine whether the following limit exists. If so, calculate it.
(a) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$
(b) $\lim _{x \rightarrow-1} x+\frac{1}{x+1}$
(c) $\lim _{x \rightarrow 5} \frac{1}{x}+\sqrt{x-6}$
(d) $\lim _{x \rightarrow-3} \frac{2 x}{\sqrt{x+3}-1}$
(2) Use the limit of the difference quotient to compute $f^{\prime}(1)$.
(a) $f(x)=2 x^{3}+3 x+1$
(b) $f(x)=\frac{1}{x^{2}}$
(3) Use the limit of the difference quotient to compute the following derivatives.
(a) $f(x)=\frac{x^{2}}{x^{2}+1}$
(b) $f(x)=5-3 x+\sqrt{x}$
(c) $f(x)=\sqrt{x^{2}+x}$
(d) $f(x)=2 x+4$

