1.2 Review

- (1) Draw a graph on a grid (as in homework problems 1 and 3) with a point P at which the graph has slope 0, and where the graph does not have slope zero for any other point besides P. Do the same for slopes $\frac{3}{4}$ and -2.
- (2) Find the points on the graph of $y = x^3$ where the tangent line is parallel to the line -3x + 4y = 12.

1.3

- (1) Differentiate the following:
 - (a) x^4

 - (b) $\frac{1}{\sqrt{x^3}}$ (c) x^{-2}
 - (d) $x^{\frac{1}{3}}$
- (2) Find the equation of the tangent line to the graph of $f(x) = \frac{1}{x^{\frac{3}{2}}}$ at $\left(4, \frac{1}{8}\right)$.
- (3) Let $f(x) = x^3 + 2x$. Calculate f'(x) using difference quotients, i.e.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

(4) Is there any point where the tangent line to the graph of $f(x) = x^3 + 2x$ is horizontal? Why or why not?

1.4

- (1) Determine whether the following limit exists. If so, calculate it.
 - (a) $\lim_{x \to 2} \frac{x^2 4}{x 2}$
 - (b) $\lim_{x \to -1} x + \frac{1}{x+1}$
 - (c) $\lim_{x\to 5} \frac{1}{x} + \sqrt{x-6}$
 - (d) $\lim_{x \to -3} \frac{2x}{\sqrt{x+3}-1}$
- (2) Use the limit of the difference quotient to compute f'(1).
 - (a) $f(x) = 2x^3 + 3x + 1$ (b) $f(x) = \frac{1}{x^2}$
- (3) Use the limit of the difference quotient to compute the following derivatives.

(a)
$$f(x) = \frac{x^2}{x^2+1}$$

(b) $f(x) = 5 - 3x + \sqrt{x}$
(c) $f(x) = \sqrt{x^2 + x}$
(d) $f(x) = 2x + 4$