- (1) Integrate:
 - (a) $\int \sqrt[3]{x+5} dx$ (b) $\int \frac{e^{x-x^2}}{e^{1-x^2}} dx$

(c)
$$\int x^2 + x \, dx$$

- (2) Compute the definite integral:
 - (a) $\int_{-1}^{3} \sqrt{2x+3} \, dx$ (b) $\int_{0}^{1} \frac{3}{x+2} - \frac{1}{x^4} \, dx$ (c) $\int_{-2}^{2} \frac{3}{2e^{3x}} \, dx$
- (3) Find the area of the region:
 - (a) between the graphs of $f(x) = x^2$ and $g(x) = \sqrt{x}$ between x = 0 and x = 2
 - (b) bounded between the curves $f(x) = 4 2x^2$ and $g(x) = 1 x^2$
 - (c) bounded between the curves $f(x) = \frac{1}{2}x^3 + 2x$ and $g(x) = x^3$
- (4) Set up a Riemann sum with n = 4 and midpoints to estimate the area under the graph of $f(x) = \frac{1}{x^2+2}$ between 0 and 2.
- (5) Approximate $(3e^{-.01}) \cdot .01 + (3e^{-.02}) \cdot .01 + \dots + (3e^{-1}) \cdot .01$.
- (6) Calculate $\lim_{n\to\infty} \left(1^3 + \left(1 + \frac{1}{n}\right)^3 + \left(1 + \frac{2}{n}\right)^3 + \dots + \left(1 + \frac{n-1}{n}\right)^3\right) \cdot \frac{1}{n}$.
- (7) Calculate the volume of the solid of revolution obtained ivy rotating the region...
 - (a) under the graph of $f(x) = (x 1)^2$ between 0 and 3 about the x-axis.
 - (b) under the graph of $f(x) = \sqrt{9 x^2}$ between -3 and 3 about the x-axis.
 - (c) bounded between the graphs of $f(x) = x^2$ and $g(x) = \sqrt{x}$ about the x-axis.
- (8) For what value of a is the area bounded between the curves of $y = x^2$ and y = ax one?