(1) Integrate
(a) $\int \frac{1}{x^{2}} d x$
(b) $\int \frac{2 x}{x^{2}} d x$
(c) $\int 3 x^{2} e^{x^{3}} d x$
(2) Compute by Riemann sums, with $n=\frac{1}{2}$, using midpoints:
(a) $\int_{1}^{2} 4 e^{-2 x} d x$
(b) $\int_{-1}^{1}\left(\frac{8}{5 e^{5 x}}+\sqrt{x}\right) d x$
(3) Compute the definite integral:
(a) $\int_{1}^{2} 4 e^{-2 x} d x$
(b) $\int_{-1}^{1}\left(\frac{8}{5 e^{5 x}}+\sqrt{x}\right) d x$
(4) Find $\int_{0}^{2}\left|x^{5}-x^{3}\right| d x$
(5) Find the area of the region bounded by the curves $y=x^{2}$ and $y=x^{4}$ by Riemann sums with $n=\frac{1}{4}$ with right endpoints, with left endpoints.
(6) Find the area of the region bounded by the curves $y=x^{2}$ and $y=x^{4}$ using definite integration.

