- (1) Integrate
 - (a) $\int \frac{1}{x^2} dx$
 - (b) $\int \frac{2x}{x^2} dx$
 - (c) $\int 3x^2 e^{x^3} dx$
- (2) Compute by Riemann sums, with $n = \frac{1}{2}$, using midpoints:
 - (a) $\int_{1}^{2} 4e^{-2x} dx$
 - (b) $\int_{-1}^{1} \left(\frac{8}{5e^{5x}} + \sqrt{x} \right) dx$
- (3) Compute the definite integral:

(a)
$$\int_{1}^{2} 4e^{-2x} dx$$

(b)
$$\int_{-1}^{1} \left(\frac{8}{5e^{5x}} + \sqrt{x} \right) dx$$

- (4) Find $\int_0^2 |x^5 x^3| dx$
- (5) Find the area of the region bounded by the curves $y = x^2$ and $y = x^4$ by Riemann sums with $n = \frac{1}{4}$ with right endpoints, with left endpoints.
- (6) Find the area of the region bounded by the curves $y = x^2$ and $y = x^4$ using definite integration.