Review of the Exponential Function.

(1) True or false: if $f(x)=e^{4}$ for all x then $f^{\prime}(x)=e^{4}$.
(2) Find the slope of the tangent line to $f(x)=e^{\left(e^{x}+x\right)}$ at $x=2$.
(3) Find the maximum and minimum values of $(x+1) e^{-x^{2}}$.
(4) Show that the equation $x e^{x}=1$ has no solutions in the interval $(1,2)$.

The Natural Logarithm Function.

(1) Simplify.
(a) $e^{\left(\ln x+\ln \left(x^{2}\right)\right)}$
(b) $\ln \left(\ln \left(e^{2}\right) \ln 1\right)$.
(c) $\ln 5+\ln 10-\frac{1}{2} \ln 625$.
(2) Find the minimum value of $x^{3} \ln x$ if $x>0$.
(3) Find the points on the graph of $y=\ln \left(x^{3}+x^{4}\right)$ where the tangent line is perpendicular to the line $y=1-\frac{x}{4}$.
(4) Solve for x.
(a) $\ln (\ln (-5 x))=0$
(b) $e^{3 x} \cdot e^{\ln 3}=2$
(c) $\ln \left(\sqrt[3]{x^{2}-5}\right)+\ln (5 x+1)+\ln 6=0$
(5) How many lines tangent to the curve $y=e^{x^{2}}$ contain the point $(0,1)$?
(6) Use logarithmic differentiation to differentiate.
(a) $f(x)=x^{x}$.
(b) $f(x)=\left(x^{2}+1\right) \sqrt{(x+7)(x-13)}$.

