- (1) True or false: if $f(x) = e^4$ for all x then $f'(x) = e^4$.
- (2) Find the slope of the tangent line to $f(x) = e^{(e^x + x)}$ at x = 2.
- (3) Find the maximum and minimum values of $(x+1)e^{-x^2}$.
- (4) Show that the equation $xe^x = 1$ has no solutions in the interval (1, 2).

The Natural Logarithm Function.

- (1) Simplify.
 - (a) $e^{(\ln x + \ln(x^2))}$
 - (b) $\ln(\ln(e^2)\ln 1)$.
 - (c) $\ln 5 + \ln 10 \frac{1}{2} \ln 625$.
- (2) Find the minimum value of $x^3 \ln x$ if x > 0.
- (3) Find the points on the graph of $y = \ln(x^3 + x^4)$ where the tangent line is perpendicular to the line $y = 1 \frac{x}{4}$.
- (4) Solve for x.
 - (a) $\ln(\ln(-5x)) = 0$
 - (b) $e^{3x} \cdot e^{\ln 3} = 2$
 - (c) $\ln(\sqrt[3]{x^2-5}) + \ln(5x+1) + \ln 6 = 0$
- (5) How many lines tangent to the curve $y = e^{x^2}$ contain the point (0, 1)?
- (6) Use logarithmic differentiation to differentiate.
 - (a) $f(x) = x^x$.
 - (b) $f(x) = (x^2 + 1)\sqrt{(x+7)(x-13)}$.