(a)
$$h(x) = (x^2 - 2x)\frac{3 - 2x^3}{x - 1}$$

(b) $h(x) = \sqrt[3]{\frac{x + 6}{x^2 - 3}}$

(b) $u(x) = \sqrt{x^2 - 3}$ (2) If $y = 3u + u^{-3}$ and $u = \frac{1}{x}$ then what is $\frac{dy}{dx}$? Use the rule $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$.

- (3) Consider the ellipse $\frac{x^2}{4} + y^2 = 9$. What are the dimensions of the rectangle of maximum area contained in this ellipse?
- (4) Find the slope of the tangent line to the graph of $x^2 + y^2 = 9$ at the point $\left(-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right)$. You can check your answer by knowing this fact about the tangent line of a circle at the point (a, b): it is always perpendicular to the line through the origin and (a, b). That is, the slope you get ought to be the negative reciprocal of $\frac{b}{a}$. Hint: in this case, we are looking for the slope of the tangent line, so we want $\frac{dy}{dx}$. Therefore we should think of x as the variable and y as a function y(x).
- (5) Find the tangent line to the graph of $4x^2 + y^2 3xy = 2$ at (1,2). Write your answer in the form y = mx + b.
- (6) The surface area of a sphere is given by $4\pi r^2$ where r is the radius of the sphere. A performer is blowing a bubble at the rate of 2 millimeters per second, at a time when the surface area of the bubble is 36π millimeters. How fast is the surface area of the bubble changing at that time?
- (7) Suppose an ant is crawling along the graph of $x^2 + y^2 xy = 1$, where x and y are both differentiable functions of the time t the ant has been crawling. Say x'(-93) = 0 and x'(-93) = 1. Find y'(-93).