
MATH 1A SECTION: OCTOBER 25, 2013

Moor, the former dragon ecologist, continues wandering the world. He encounters some
calculus problems along the way.

1. Moor discovers a new colony of dragons, and he wants to fence off some land so that the
dragons can be protected from the dragon eradicators. He only has 100 km of fencing,
however. How does he protect the dragons most optimally? Help him do this by solving
a calculus problem:

Find the dimensions of a rectangle with perimeter 100 whose area is as large as possible.

2. The dragons are angry at Moor for being responsible for the dragon eradication program.
A dragon is flying around Moor in an elliptical orbit. How doomed is Moor?

Find the points on the ellipse 4x2 + y2 = 4 that are closest to the point (0, 1).

3. Moor decides that he needs a new career. He gets a job mooring boats. Unfortunately,
mooring boats involves calculus, and Moor isn’t so good at calculus. Can you help?

A boat leaves a dock at 2pm and travels due south at a speed of 20 km/hr. Another
boat has been heading due east at 15 km/hr and reaches the same dock at 3pm. At what
time were the boats closest together?

4. Mooring boats is too hard. Moor has decided to go back to his dragon colony. While
there, he is studying dragon eggs. Unlike normal eggs, dragon eggs are perfectly spherical,
with cylindrical yolks. Healthier dragon eggs have bigger egg yolks, and Moor is trying
to create an optimized dragon egg. How should he do this?

A right circular cylinder is inscribed in a sphere with radius r. Find the largest possible
volume of such a cylinder.



Solutions and Commentary

1. Draw a rectangle. Let one of the sides be s. In order to make the perimeter be 100, the
other side needs to be 50− s; the perimeter is then s+ (50− s) + s+ (50− s) = 100.

s

50− s

s

50− s

The area of this rectangle is s(50−s) = 50s−s2, and we need to find the maximum value
of this function.

Let f(s) = 50s− s2 be the area function. Then f ′(s) = 50− 2s. Solving f ′(s) = 0 gives
50 − 2s = 0, so 2s = 50 and hence s = 25. This is the critical number for this function.
Note that f ′′(s) = −2 < 0, so this critical number does indeed correspond to a maximum.
Therefore, our rectangle has maximum area exactly when it has all sides of length 25, i.e.
when it is a square.

2. Draw a picture as follows:

•
(0, 1)

•(x, y)

Consider an arbitrary point (x, y) on the ellipse. We are interested in its distance to the
point (0, 1). To find this, we use the distance formula. This gives

d =
√

(x− 0)2 + (y − 1)2.

We need to minimize this quantity, but it’s in terms of both x and y, which is not so good.
But since (x, y) is on the ellipse, we also know that 4x2 +y2 = 4, so therefore 4x2 = 4−y2
and hence x2 = 1− 1

4
y2. So we plug this in:

d =
√
x2 + (y − 1)2 =

√
1− 1

4
y2 + (y − 1)2.

We should now minimize this quantity. To simply the calculation, note that d is minimized
exactly when d2 is also minimized, so it suffices to minimize d2 and drop the square root.

Now, let

f(y) = 1− 1

4
y2 + (y − 1)2.
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This is the thing that we need to minimize. Differentiate to see that f ′(y) = −1
2
y+ 2(y−

1) = 3
2
y − 2; solving f ′(y) = 0 yields 3

2
y = 2, so our critical point is y = 4

3
. Note that

f ′′(y) = 3
2
> 0, so we do have a minimum.

Plugging back in, we have that x2 = 1 − 1
4
y2 = 5

9
, so x = ±

√
5
3

. Therefore, the closest
points on the ellipse to the point (0, 1) are(√

5

3
,
4

3

)
,

(
−
√

5

3
,
4

3

)
.

Note that you can also solve this problem by writing everything in terms of x and
optimizing for x. By then, you end up needing to optimize a function that has square
roots, and the calculation is messier. You’ll end up with the right answer, but it might
take a bit more work.

3. Again, we draw a picture:

15 km/hr

20 km/hr

·

The two boats are at the dock at 2pm and 3pm respectively; let’s write everything in
terms of a common start time. Let 2pm be the time t = 0. At time t = 0, the first boat
is at the dock and the second boat is at 15 km west of the dock.

At time t, the first boat has moved distance 20t (recall that distance is speed × time),
so it is distance 20t from the dock. The second boat has moved distance 15t toward the
dock, but it was originally distance 15 away from the dock, so it is now 15 − 15t away
from the dock. This gives the following picture:

15− 15t

20td

At time t, the distance between the two boats is then (by the Pythagorean Theorem)

d =
√

(15− 15t)2 + (20t)2.

We want to minimize this quantity. As in the previous problem, it suffices to minimize
d2; we therefore need to minimize

d2 = f(t) = (15− 15t)2 + (20t)2 = 625t2 − 450t+ 225.

To minimize, we note that f ′(t) = 1250t − 450, so f ′(t) = 0 occurs only at the time
t = 450

1250
= 9

25
= 0.36. This is the critical number, and since f ′′(t) = 1250 > 0, it is indeed

a minimum.
So the boats are closest together at time t = 0.36, which is 0.36 hours (or 21.6 minutes)

after 2pm.
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4. Again, we draw a picture.Here, imagine a cylinder inside a sphere, and take a cross section
along the axis of the cylinder. The sphere becomes a circle, and the cylinder becomes a
rectangle. The rectangle has all four vertices touching the circle (since otherwise we could
expand the cylinder and still stay inside the sphere).

Let the sphere have radius r and let cylinder have height h and radius R. Then the
picture looks like this:

••

••

•

r

h

• R

h
2

We wish to maximize the volume of the cylinder, which is V = πR2h. We want to turn
this into an optimization problem that we can do with the tools that we have so far, so
we want to write this in terms of a single variable.

Happily, we have a connection between R and h. Look at the triangle in the diagram,
and apply the Pythagorean theorem. This gives (h

2
)2 + R2 = r2, so R2 = r2 − (h

2
)2. This

means that the volume is

V = πR2h = π

(
r2 − 1

4
h2
)
h = πr2h− π

4
h3.

Here, we should think of r as a constant, given to us in the statement of the problem.
So now, we just have to maximize the volume. To do this, define f(h) = πr2h − π

4
h3.

Differentiate to see that f ′(h) = πr2 − 3π
4
h2. This is zero when 3π

4
h2 = πr2, so h2 = 4

3
r2

and h =
√

4
3
r. (We can take the positive square root because we know the height needs

to be positive.) Since f ′′(h) = −3π
4
< 0, we know that we indeed have a maximum at our

critical point.
Therefore, we can plug this value of h back into our formula for the volume of the

cylinder to see that the maximal volume is

V = πr2h− π

4
h3 = πr2

√
4

3
r − π

4

(√
4

3
r

)3

=
2√
3
πr3 − 2

3
√

3
πr3 =

4π

3
√

3
r3.
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