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1. Introduction

This course is about fractal geometry and dynamical systems. These
areas intersect, and this is what we are interested in. We won’t be able
to go deep. It is new and rapidly developing.1

Fractal geometry itself goes back to Caratheodory, Hausdorff, and
Besicovich. They can be called fathers of this area, working around
the year 1900. For dynamical systems, the area goes back to Poincare,
and many people have contributed to this area. There are so many

119 June 2010
1



2 FRACTAL GEOMETRY AND DYNAMICS

people that it would take a whole lecture to list. The intersection of
the two areas originated first with the work of Mandelbrot. He was
the first one who advertised this to non-mathematicians with a book
called Fractal Geometry of Nature. This tells how the subject can be
applied to models in physics. So many people from other areas were
interested in it. Until recently, the area has been driven by physicists.
They didn’t prove anything, and made a bit of a mess; a lot things were
not correct. They are responsible for the major ideas, however. They
had major ideas, but some things were not correct. First we need to
discuss some of each of fractal geometry and dynamics, and show how
they interact.

2. Introduction to Fractal Geometry

First, we’ll discuss fractal geometry.
Fractal sets are lines (R1), planes (R2) etc. Fractal sets are subsets

A ⊂ Rn. Here’s a description of what they are. We’ll go into the details
later.

(1) complicated geometry
(2) self-similarity – the structure of the set repeats itself on differ-

ent scales. We need to be less rigorous and allow some small
distortion – nature isn’t perfect. For example, the interval [0, 1]
is self-similar. We have to allow simple transformations: trans-
lation, rotation, etc.

2.1. Some Examples.

Example 2.1. We give an example of a set that is a fractal by satis-
fying both of these properties. We start with an interval, divide it into
three parts, remove the central part, and replace it with an equilateral
triangle so that each segment is of length 1

3
. This is a broken line with

length 4
3
. We repeat for each segment to get a curve of length (4

3
)2. We

go on with this procedure. We repeat infinitely many times to get a
fractal that looks like a snowflake. This is called a von Koch curve.

This has complicated geometry because each iteration has length 4
3

n
,

so it has infinite length. But the curve lives in a bounded region, so
this is a bounded curve of infinite length. If we pick a small piece and
magnify it, we get the same curve. It is obviously self-similar because
of the procedure for making it.

It is also not differentiable anywhere: there are a dense set of non-
differentiable points. If the curve were differentiable, it would have
finite length.
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Example 2.2. Weierstrass suggested considering the function

f(x) =
∞∑
n=0

an cos(bnπx)

If 0 < a < 1, b > 0, ab > 1+ 3
2
π, the graph of this function is an example

of something that is continuous but not differentiable anywhere. Note
that the finite sum

fm(x) =
m∑
n=0

an cos(bnπx),

is differentiable, however. This curve has complicated geometry and is
self-similar: It is another example of a fractal. This gives an analytic
approach while van Koch gave a geometric approach.

Can you have a curve that is differentiable somewhere, but not differ-
entiable somewhere, and have infinite length? Of course, we can cheat
and attach a straight segment to a fractal. But this isn’t interesting.
Here’s a more interesting version:

Problem 2.1. Is there a continuous curve which has infinite length and
is differentiable everywhere except at a set of points that is nowhere
dense? Note that this set has to be fairly complicated: It has to not be
finite, but its complement must be dense. Pesin hasn’t seen a solution
written anywhere.

We consider another example of a fractal that is important in dy-
namical systems.

Example 2.3. Take the interval [0, 1]. Divide it into three parts and
remove the middle third. Repeat this by cutting each remaining seg-
ment into three parts and removing the middle third of each. We repeat
this infinitely. At the end, we obtain the Cantor set.

We removed intervals of total length 1, so this is a set of measure
zero.

This set is known for a game called the Cantor game. We take an
interval, pick a point, measure the distance to the nearest end, and
take that distance from the other end. Repeat this process, and you
eventually go out of the interval. Take two players, have them each
choose a point, and they want to stay in the interval for as long as
possible. The Cantor set has infinitely many steps in the interval, so
being close to the Cantor set is good.

Here’s another game:
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Example 2.4. Take a point in an equilateral triangle, connect it to
the nearest vertex, and go back double the distance to the vertex.
Eventually, we land outside the triangle. What’s the winning set?

We can easily see that this set is made by repeatedly removing the
central equilateral triangles. After infinitely many steps, we obtain the
Sierpinski gasket. This game is called the Sir Pinski game. This is
another example of a fractal set: complicated geometry and self-similar.
There is a three-dimensional version of this.

Fractals often show up in nature.

• branches of a California oak tree
• bronchial tree in lungs
• pictures of coastline taken from a satellite.
• Circle Limits IV by M. C. Escher
• other images from Escher

There exist fractal tilings. Starting from a hexagonal grid, we apply
some small change to each side. Doing this repeatedly from the smaller
lines, we obtain a tiling. Note that the area of each polygon does
not change, but the perimeter becomes bigger. In the end, we get
boundaries that are continuous curves of infinite length, but the area
never changed.

2.2. Cantor sets. When Cantor discovered his set, he was not aware
of fractal geometry. Instead, consider A ⊂ [0, 1]. We want to count the
number of points of A. If A is finite, this is easy; we just compare it to
a set of known size and find a bijection. What if A is infinite?

We can think of this as a story. We have a party, and everyone is
required to wear hats. Everyone left, and there was one hat left. To
figure out whose hat it is, he invites everyone back, and asks them to
wear hats. And someone doesn’t have a hat. How many guests were
there? It is infinite countable.

Definition 2.1. A set has countable cardinality if there is a bijection
with the integers.

How many infinite sets of different cardinality are there? Countable
sets are one example. Another example is the points in the interval
[0, 1]. Cantor first proved that this set has cardinality bigger than
that of countable sets. Cantor’s question was if there was a set was
cardinality between countable and uncountable. His example was the
Cantor set. That was his motivation, but it turns out that he was
wrong; the Cantor set is uncountable. Poincare said that this is a
disease that mathematics would have to recover from. They ended up
with fractal geometry.
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Definition 2.2. Let the intervals of the first iteration of the Cantor set
be ∆1 and ∆2, and let the intervals of the k-th iteration be ∆i1,i2,...ik .
Note that ∆i1,i2,...ik ⊂ ∆i1,i2,...ik−1

. Then the Cantor set is

C =
⋂
n≥0

⋃
i1,...,in

∆i1,i2,...,ik .

Each x ∈ C is associated to a coding determined by which interval
it is in for each iteration of the Cantor set; for each iteration, it has a
choice of two intervals to land in.

Let Σ+
2 = {(i1, i2, . . . , in, . . . )}, i = 1, 2. Then consider the map

h : Σ+
2 → C defined by

h(i1, i2, . . . ) = x =
⋂
n≥0

∆i1,i2,...ik .

This is a coding map and is a one-to-one correspondence between Σ+
2

and C.
We now repeat the Cantor set construction with some changes to

make it more general. Instead of dividing each interval into three equal
thirds, we choose two arbitrary disjoint intervals. We go on to repeat
this. This has the same structure of the Cantor set; we still have
∆i1,i2,...ik and C defined in the same way. This is also called a Cantor
set, and there are lots of these. Note that both location and lengths
of the intervals were chosen arbitrarily.

What is the length of such a Cantor set? Is it possible that length
C > 0?

To answer this, we make this construction a bit more rigid. Choose
numbers 0 < λ1, λ2 < 1 – these are called ratio coefficients. Now,
choose intervals so that |∆11| = λ1|∆1| and |∆12| = λ2|∆2|. Then
|∆i1,i2,...ik | = |∆1|λi1λi2 . . . λik . To obtain the middle third Cantor set,
we use λ1 = λ2 = 1

3
; it is a special case of our generalized Cantor set.

Note that the coding argument from before still holds: we still have
a coding map h : Σ+

2 → C. The coding does not distinguish ratio coeffi-
cients, and all Cantor sets are in correspondence with Σ+

2 . The coding
loses a lot of information about the set by losing the ratio coefficients.

Hausdorff and Caratheodory asked if there are any properties that
distinguish Cantor sets. We will discuss this later in the course.

3. Introduction to Dynamical Systems

Now that we’ve seen fractal geometry, we shall discuss dynamical
systems.
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3.1. Some definitions.

Definition 3.1. A dynamical system is a map f : Rn → Rn that
maps x→ f(x) = y.

We think of this as a motion, or a transformation, and takes one point
to another point. The simplest example of this is a linear transforma-
tion f(αx+ βy) = αf(x) + βf(y). This can be written as f(x) = Ax,
where A is a matrix. The simplest case is that of R1, where we have
f(x) = ax.

We can iterate the map f to obtain

x→ f(x)→ f(f(x)) = f 2(x)→ · · · → fn(x).

This is called the trajectory of x. We say that f(x) is the image of x.
A fixed point is a point such that x = f(x). Similarly, a periodic

point is a point fm(x) = x for some m. Then m is the period of x.
For the linear map, 0 is a fixed point, and there are no periodic points.
When a < 1, 0 is a stable fixed point, and when a > 1, 0 is an unstable
fixed point.

If we have a set A ⊂ Rn, the image of A is f(A) = {f(x) : x ∈ Rn},
and the preimage of A is f−1(A) = {x ∈ Rn : f(x) ∈ A}. By taking
preimages, we have both positive and negative trajectories; we allow
time to be both positive and negative.

Consider a linear map f(x) = Ax, x ∈ R2 such that detA 6= 0, so
that f is invertible. This matrix has eigenvalues λ1 = α1 + iβ1 and
λ2 = α2 + iβ2. For now, assume that the eigenvalues are real numbers.
If λ1 > 1 and λ2 > 1, the map f moves points away from 0. This is
an expanding fixed point. Similarly, if λ1 < 1 and λ2 < 1, f moves
points toward 0. This is an attracting fixed point. If λ1 < 1 and
λ2 > 1, then f moves points along hyperbolas, and 0 is a hyperbolic
fixed point.

3.2. Nonlinear maps. Consider a map f : R2 → R2 that is not nec-
essarily linear but is invertible. It has a fixed point f(0) = 0. We can
expand f as a Taylor series:

f(x) = f(0) + f ′(0)x+ g(x) = Ax+ g(x)

for x within a small neighborhood of 0, where g(x) is term of higher
order, so

|g(x)|
|x|

→ 0.

Since g(x) gives only a small error, we can drop this term. Near the
fixed point, we look at only the linear term. We can study the behavior
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of the nonlinear map near the fixed point by studying linear maps and
correcting for the nonlinear term.

If we had another fixed point, we can do the same analysis around
that fixed point as well. We want to connect all of our fixed points
and get a global picture. Around each fixed point, we can draw the
trajectories near each fixed point and get a first impression of what
happens everywhere.

So we can analyze any map by looking at fixed points and linear
maps. But it’s not so simple, because we also have to consider periodic
orbits. In order to find periodic points, we need to solve fn(x) = x
for each x. Each is nonlinear and there are lots of equations, so this
is actually very complicated. The most interested cases are those with
infinitely many periodic orbits.

We can plot trajectories of x → fn(x) in the plane R2 = (x1, x2).
Instead, we can also plot each coordinate against the time n. There
are three types of behavior: regular periodic behavior, first chaotic and
then periodic (intermediate), and forever chaotic. This can be seen
by the regular periodic or entirely chaotic behavior of these coordinate
plots. What drives this type of behavior?

Cantor sets are invariant sets f(A) = A that are invisible but strongly
influence the behavior, producing chaotic behavior. This gives a con-
nection between fractal geometry and dynamical systems.

4. More on Dynamical Systems

4.1. Definitions. Last time, we considered Euclidean space Rp and a
ball ∆ ∈ Rp. 2 Inside this ball, we chose smaller discs ∆1, . . .∆r. We
chose ratio coefficients λ1, λ2, . . . λr so that 0 < λ1 < 1 and

∑
λi = 1.

We continue this process to create balls ∆i1,...,in so that

∆i1,...,in ⊂ ∆i1,...,in−1

and

∆i1,...,in ∩∆j1,...,jn = ∅.
Let the radius of ∆i1,...,in be ri1,...,in , and we require

ri1,...,in = ri1λi2 . . . λin .

Definition 4.1. We call

C :=
⋂
n≥0

⋃
i1,...,in

∆i1,...,in

a Cantor-like set.
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Each of these sets is an example of a fractal set. This is a huge class
of fractal sets.

Let Σ+
2 = {ω = (i1, i2, . . . in) : ij = 1, 2, . . . , r}. This is the one-sided

(positive) sequence on two numbers. Similar sets of sequences can be
defined.

Now, there is a coding map h : S+
2 → C defined by

h(ω) = h(i1 . . . in . . . ) =
⋂
n≥0

∆i1,...,in = x.

This is a bijection, and it is a symbolic representation of the Cantor
set.

Remark. We can generalize this construction of the Cantor set. Now,

consider λi → λ
(n)
i . We would still assume that

∑
λ

(n)
i < 1; this gives a

construction where the ratio coefficients are functions of time. Gener-
alizing further, we can obtain λ1 → λi1,...in ; this is called a construction
of finite memory. Furthermore, instead of considering balls, we can
consider ellipses. We can have two sets of ratio coefficients; one for
each axis of the ellipses. We will only consider the simplest case of
constant ratio coefficients.

We would like to find distinguishing properties of these sets.

Proposition 4.1. Here are some properties of Cantor sets:

(1) C is closed
(2) C is nowhere dense in ∆
(3) C has measure zero: Vol(C) = 0

4.2. Connection to Dynamical Systems. We considered the linear
map x 7→ ax. Consider the interval [0, 1] and take two subintervals ∆1

and ∆2. Consider two linear functions on the two subintervals, and
consider a map f : ∆1 ∪∆2 → [0, 1]. We can we can iterate this map
repeated and obtain an infinite sequence of points. There is a problem,
however: the trajectory might land outside of our two subintervals, in
which case we have to stop. We want to find the set of points where
this iteration procedure can be continued indefinitely.

Remark. We can look at this as a game. We have two players, and
they can each choose a point, and repeat our procedure; the winner is
the person with more iterations before stopping.

We can also draw a copy ∆1 and ∆2 on the vertical axis and project
them down to the horizontal axis by the linear map. This yields four
intervals on the horizontal axis: ∆11,∆12,∆21,∆22; points in each of
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these four intervals can be iterated at least twice. Repeating this pro-
cedure, we will have two intervals inside each previous interval. This
is a Cantor-like construction.

In this way, we obtain sets ∆i1,...in such that

∆i1,...,in ⊂ ∆i1,...,in−1

and

∆i1,...,in ∩∆j1,...,jn = ∅.
and ∆i1...in is closed. Then the set

C =
⋂
n≥0

∆i1...in

is the largest invariant set f(C) = C. This is the most interesting part of
the dynamics. We want to concentrate our attention on C, considering
the restriction f |C.

4.2.1. Periodic orbits.

Proposition 4.2. The map f |C has 2n periodic orbits of period n.
Adding all of them together, we obtain a dense set inside the Cantor
set.

Proof. Consider the coding map h : Σ+
2 → C, and we have a map

f : C → C. Drawing a commutative diagram, we see that there is a
map σ : Σ+

2 → Σ+
2 . This map can be expressed as σ = h−1 ◦ f ◦ h.

Σ+
2

σ //

h

��

Σ+
2

h

��
C

f // C

Exercise 4.1.

σ(ω) = σ(i1i2 . . . ik . . . ) = (i2i3 . . . ik . . . )

This is known as the full shift.

So if x is a periodic point so that fnx = x then w = h(x) is a periodic
point for σ, so that σnω = ω. This is a 1-1 correspondence between
periodic points of f and σ. But it is easy to find periodic points of σ:
they just consist of repeating blocks

(i1i2 . . . in|i1 . . . in|i1 . . . in| . . . ).

Therefore there are 2n periodic orbits of period n. �
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4.2.2. Chaotic Behavior.

Remark. If he discussed chaotic dynamics a hundred years ago, Pesin
would have been expelled for saying nonsense. The prevailing philos-
ophy was that everything could be found at any time exactly without
numerical error terms. There is no randomness involved. This is intu-
ition coming from classical mechanics. So randomness can only come
from outside, as an external force.

In 1963, there was a famous meteorologist Lorenz who was interested
in predicting the weather and turbulence. He had a computer, which
was a great advantage compared to calculating by hand. He simpli-
fied the Navier-Stokes equation to obtain a system of three differential
equations in three unknowns, now called Lorenz equations. This is a
crude approximation to Navier-Stokes. He used the computer to study
solutions to his equations, and he determined that the solution is com-
pletely chaotic. He was very surprised, so he did a statistical analysis
on the local extrema and concluded that the distribution of the local
extrema were completely random. He wrote a paper in a meteorology
journal and it was completely lost. A mathematician rediscovered this
and saw that chaotic behavior appears in deterministic systems. Yorke
called this deterministic chaos.

Consider a space and a map f moving points of the space to other
points. Cut this space into two pieces. Follow a trajectory and mark
which piece it visits (1221. . . ). This is a simple coding of the trajectory,
and it can be done for any dynamical system.

Given any arbitrary sequence, can you find a point with a trajectory
that reproduces the sequence exactly? It this is the case, we have
random behavior. Then we can never predict where any point x will
be after n steps. This is an explanation of how chaotic motion appear
in a deterministic system.

Consider our linear map again. We split C into two pieces: C ∩ ∆1

and C∩D2. This gives a sequence as before, and we claim we can obtain
any sequence by our symbolic representation. So the behavior is very
complicated even though we’re actually considering a linear map.

In general, how do we know how to split the region into two pieces?
There might not be a good way to do this. In some cases, we might
have to split into four pieces. This is one of the greatest problems
in dynamical systems: Is it possible to produce a coding so that the
system produces random behavior? Sometimes this is easy, sometimes
it is hard, sometimes it is not possible.

Example 4.1. Consider the circle S1 and a map f : S1 → S1 defined
by f(x) = x + α (mod 1). If α is a rational number then every point
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is periodic. If α is an irrational number, no points are periodic. This
is not a random map. This is an interesting dynamical system that is
not chaotic.

What drives this chaotic behavior? Going back to our linear map,
take x, y ∈ C that are very close: |x− y| < ε. Compare the trajectories
of x and y. Then |f(x)− f(y)| is bigger than |x− y| by a factor of the
slope of the linear map, which is λ−1

1 = |∆1| or λ−1
2 = |∆2|. Going on

and repeating this process, we see that every point of C is a repelling
point. The trajectories separate, and at some point, they can no longer
be compared because they are in different pieces of our space. After
enough time, they might come back together because the set is closed.
This is chaotic behavior: there is a fight between expansion and coming
back. This turns out to be a universal behavior.

How do we characterize this chaotic behavior? We need some math-
ematical tools. We want to characterize the size of this Cantor set.

4.2.3. Metrics. First, we need some general notions. In Euclidean
space Rp, for x = (x1, . . . , xp) and y = (y1, . . . , yp), there are several
ways to measure distance:

d(x, y) =

√√√√ p∑
i=1

(xi − yi)2

d1(x, y) =

p∑
i=1

|xi − yi|

d2(x, y) = max
1≤i≤p

|xi − yi|

We introduce a metric in Σ+
2 . For ω(1) = (i

(1)
1 , i

(1)
2 , . . . , i

(1)
n , . . . ) and

ω(2) = (i
(2)
1 , i

(2)
2 , . . . , i

(2)
n , . . . ) we have

d(ω(1), ω(2)) =
∞∑
n=0

|i(1)
j − i

(2)
j |

2j

d1(ω(1), ω(2)) =
1

N(ω(1), ω(2))

where N(a, b) is the separation time – the first position where a and
b are different.

Two metrics d1(x, y) and d2(x, y) are strongly equivalent if there
exists C > 0 such that

C−1d1(x, y) ≤ d2(x, y) ≤ Cd1(x, y).

The metrics given earlier are strongly equivalent.
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Example 4.2. We consider an example of a metric on Rp that is not
strongly equivalent to the previous ones. Consider

d(x, y) =

{
|x− y| if x and y lie on the same line

|x|+ |y| otherwise.

5. Hausdorff Dimension

5.1. Definition. Take any set Z ⊂ Rn, and a number α ≥ 0. Fix
ε > 0. We want to cover Z with countably many open balls of different
radii. This collection of balls is

U = {B(xi, ri) : ri < ε, i = 1, 2, 3, . . . }.
These are called ε-covers. Note that this depends on which metric we
use; the metric determines the notion of the ball. This won’t change
significantly if we change between strongly equivalent metrics. We’re
interested in finding some sort of “optimal” cover, using the “smallest”
number of balls. This is given when

M(Z, α, ε) := inf
U

{
∞∑
i=1

rαi :
⋃
i

B(xi, ri) ⊃ Z, ri ≤ ε

}
is achieved, where M(Z, α, ε) ∈ [0,∞].

Definition 5.1. Let the Hausdorff function be

m(Z, α) := lim
ε→0

M(Z, α, ε)

This limit exists becauseM(Z, α, ε) is monotonically increasing. This
construction was first done by Caratheodory in 1914. It was indepen-
dently rediscovered by Hausdorff in 1919. The name shows that history
is not always fair.

5.1.1. m(Z, α) as a function of Z.

Proposition 5.1. First, we fix α and consider m(Z, α) as a function
of Z. There are some properties:

(1) m(∅, α) = 0 (normalization)
(2) m(Z1, α) ≤ m(Z2, α) when Z1 ⊂ Z2 (monotonicity)
(3) m(

⋃∞
i=1 Zi, a) ≤

∑∞
i=1m(Zi, α) (sub-additivity)

Proof. The first two properties are trivial. We sketch the proof of the
third fact. For any δ > 0, there exists ε > 0 such that

|m(Z, α)−M(Z, α, ε)| ≤ δ

2
.
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There then exists U = {B(xi, ri)} such that

|M(Z, α, ε)−
∑

rαi | ≤ δ.

Denote Z =
⋃
Zj. We now see that there exists ε > 0 such that

Uj = {B(tji, rji)} where

|m(Zj, α)−
∑

rαji| ≤
δ

2j
.

Note that U = {B(xji, rji)} is an ε-cover of Z. Therefore, we see
that

M(Z, α, ε) ≤
∑
j,i

rαij =
∑
j

∑
i

rαji

≤
∑
j

(
m(Zj, α) +

δ

2j

)
=
∑
j

m(Zi, α) + δ.

Since δ was arbitrary, the result now follows. �

Definition 5.2. A set function (a function that depends on a set) is
called a measure if it satisfies these three properties. Our m(Z, α) is
called the Hausdorff measure.

Sometimes this is infinite. It is most interesting when it is finite.

5.1.2. m(Z, α) as a function of α. Now we fix Z and consider m(Z, α)
as a function of α. We can draw its graph. This graph is constant
except possibly at one point; before this point it is infinite and after
this point it is 0.

Proposition 5.2. If m(Z, α) is finite then for every β > α, m(Z, β) =
0. If m(Z, α) is finite and positive then for every β < α, m(Z, β) =∞.

Proof. We prove the first statement; the second is a simple exercise.
Consider

M(Z, β, ε) = inf
U

{∑
rβi :

⋃
B(xi, ri) ⊃ Zi, ri ≤ ε

}
.

This can be easily estimated by writing rβi = rαi r
β−α
i . �

Note that m(Z, α) can only be finite and nonzero for at most one
value α.

Definition 5.3. α is called the Hausdorff dimension of Z. We
denote α = dimH Z.

We are interested in finding the sets where this can be computed.
This is true for fractal sets, and the Hausdorff dimension is what we
call “fractal dimension”.
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5.2. Properties of Hausdorff Dimension.

Proposition 5.3. Some properties of the Hausdorff dimension3

(1) dimH ∅ = 0
(2) dimH Z1 ≤ dimH Z2 when Z1 ⊂ Z2

(3) dimH

⋃
Zj = sup dimH Zj

Proof. These follow from the properties in 5.1 above. In particular, the
third property follows from sub-additivity:

Choose α so that

α > sup dimH Zj.

Then

m(Zj, α) = 0 =⇒ m
(⋃

Zj, α
)

= 0 =⇒ α > dimH

⋃
Zj.

�

Corollary 5.4. Note in addition that dimH{x} = 0 and dimH Z = 0
for any countable set Z.

Example 5.1. dimH R1 = 1 and dimH Rp = p.
The first fact follows from the fact that dimH [0, 1] = 1, and the

second fact follows that dimH B
p = p. We consider these bounded

cases instead.
Consider the unit square S2. We wish to show that the Hausdorff

dimension is dimH S
2 = 2. This can be done directly from the defini-

tion, but there is another way. Note that S2 = [0, 1]× [0, 1]. So we ask:
is it true that

dimH([0, 1]× [0, 1]) = dimH([0, 1]) + dimH([0, 1]) = 2?

Question. Is it true that

dimH Z1 × Z2 = dimH Z1 + dimH Z2?

This is a difficult question. This was posed by Besicovich. He posed
this question during a seminar at Cambridge, and they tried to prove
it. They failed because there is a counterexample. Instead, it is only
true that

dimH Z1 × Z2 ≥ dimH Z1 + dimH Z2.

Can we set some conditions on when equality holds? We’ll answer this
question later. The point now is that dimensions are tricky.

321 June 2010
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5.2.1. Hausdorff Dimension of the Cantor Set. We now consider the
Hausdorff dimension of the Cantor set.

Besicovich posed this question, and Moran obtained the result. The
most puzzling question is whether the Hausdorff dimension depends on
the locations of the balls in the Cantor set. Everyone in the seminar
believed that it should. Moran found a proof that shows this, and he
presented this in the seminar. Besicovich found a mistake, and the
next day Moran found a proof that doesn’t depend on locations. This
was correct. It is amazing that the locations of the balls do not matter
– it only depends on the ratio coefficients.

His result was:

Theorem 5.5. The Hausdorff dimension of the Cantor set is

dimH C = α,

where α satisfies the equation
r∑
i=1

λαi = 1.

Note that α is not an integer. It also doesn’t depend on dimension;
the dimension of the construction in higher dimensions is the same as
a linear case.

Define F (x) =
∑r

i=1 λ
x
i . We plot this function and see that there is

a unique root. Why is this root equal to the dimension of the Cantor
set?

6. Box Dimensions

6.1. Definitions. We modify the notion of the Hausdorff dimension.
Consider a set Z ⊂ Rp and a number α. Define

R(Z, α, ε) = inf
U={B(xi,ri)}

{∑
rαi :

⋃
i

B(xi, ri) ⊃ Z, ri = ε

}
r(Z, α) = lim

ε→0
R(Z, α, ε)

The only difference with the previous definition is that all balls are now
the same size. Note that it is not clear that the limit exists. Instead,
we consider

r(Z, α) = limε→0R(Z, α, ε)

r(Z, α) = limε→0R(Z, α, ε).

Note that we do not have subadditivity in this case. We still have
the properties that r(∅, α) = 0 and r(Z1, α) ≤ r(Z2, α) for Z1 ⊂ Z2.
Similarly, r(∅, α) = 0 and r(Z1, α) ≤ r(Z2, α).
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As in the case of Hausdorff dimension, this yields two critical values
α and α by an analogous argument as Proposition 5.2.

Definition 6.1. α and α are the upper and lower box dimensions of
Z, denoted dimB and dimB. Note that α ≤ α.

6.2. Properties of Box Dimensions. We now list several properties
of box dimensions without proof.

Proposition 6.1. The box dimensions satisfy

(1) dimH Z ≤ dimBZ ≤ dimBZ. When these three values agree,
the common value is called the fractal dimension.

(2) dimB{x} = 0
(3) dimBZ = 0 for any finite set Z.
(4) dimBZ = dimBClosure(Z).
(5) dimB[0, 1] = 1.

Remark. Note that we can rewrite R(Z, α, ε) as inf εαN(Z, ε), where
N(Z, ε) is the smallest number of balls of radius ε needed to cover Z.

Then

dimBZ = lim
ε→0

logN(Z, ε)

log 1
ε

.

Another interesting result is that

dimBZ = lim
ε→0

logL(Z, ε)

log 1
ε

.

where L(Z, ε) is the largest number of disjoint balls of radius ε centered
at Z. It is easy to relate L(Z, ε) and N(Z, ε). These formulas are often
useful, but we will not need them. We omit the proof.

Problem 6.1. We do a Cantor-like construction with the sets

∆1, . . . ,∆r,

where the ratio coefficients λ
(n)
1 , . . . λ

(n)
r depend on n, and

∑
λ

(n)
i = 1,

where λ
(n)
i → λi when n→∞. Is Moran’s statement that

dimH C = dimBC = dimBC
true in this case?

6.3. Dimension of the Cantor Set. We want to refine Moran’s re-
sult of his Theorem 5.5, and we will obtain:

Theorem 6.2.

dimH C = dimBC = dimBC.
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6.3.1. Two Technical Lemmas. To prove this theorem, we need two
technical lemmas. These allows us to handle the Hausdorff dimension.
They estimate dimH from above and from below.

Lemma 6.3. Assume that there exists C > 0 such that for every
ε > 0 there exists an ε-cover U = {B(xi, ri)} with

∑
rαi ≤ C. Then

dimH Z ≤ α.

Proof. Observe that M(Z, α, ε) ≤
∑
rαi ≤ C for every ε > 0. There-

fore, m(Z, α) ≤ C is finite, so dimH Z ≤ α, as desired. �

Lemma 6.4. Assume that there exists C > 0, ε > 0 such that for
every ε-cover U = {B(xi, ri)} where

∑
rαi ≥ C. Then dimH Z ≥ α.

Proof. We have M(Z, α, ε) ≥ C for some ε > 0. So m(Z, α) ≥
M(Z, α, ε) ≥ C. As before, this is means that dimH Z ≥ α. �

Remark. In the first lemma, we need to build a cover for any given
ε. In the second lemma, we need to work with all ε-covers. Therefore
the second lemma is harder to work with. So estimates from below for
Hausdorff dimension are usually much harder to establish than those
from above.

Proposition 6.5.

dimH [0, 1] = 1

Proof. To prove this, we’ll first show dimH [0, 1] ≤ 1. We want to find
a good cover of intervals of size ε. To do this, divide the interval into
strips of length ε. We can do this with 2

ε
intervals of length ε, which

has finite total length. Then N([0, 1], ε) = 2
ε
, so that

lim
ε→0

log 2
ε

log 1
ε

= 1.

Therefore dimB[0, 1] ≤ 1.
Now, we want to show that dimH [0, 1] ≥ α for any α < 1. We

use Lemma 6.4 with C = 1. We take any ε-cover. For this cover,
we compute

∑
rαi =

∑
rir

α−1
i . Since ri < ε, we have rα−1

i ≥ 1
ε1−α

.
Therefore ∑

rαi ≥
1

2ε1−α

∑
2ri ≥

1

2ε1−α ≥ 1

for sufficiently small ε. Hence, dimH [0, 1] ≥ α for any α < 1, and we’re
done. �
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6.3.2. Proof of Dimension of C. We can now prove Moran’s theorem.

Proof of Moran Theorem 6.2. We want to find a good cover for which
we can use Lemma 6.3. Note that

|∆i1,...,in| = |∆i1|λi2 , . . . λin ≤ |∆i|λn−1 ≤ aλn−1

where 0 < λ := max1≤i≤r λi ≤ 1 and a = max |∆i|. This means that
for any ε > 0, there exists n such that |∆i1,...,in| ≤ ε. These sets
∆i1,...,in give a cover for our problem. They are called basic sets of the
construction.

We now need to show that∑
|∆i1,...,in|α ≤ C.

To do this, observe that∑
|∆i1,...,in|α =

∑
i1,...,in

|∆i1|αλαi2 . . . λ
α
in

=
∑

i1,...,in−1

|∆i1|αλαi2 . . . λ
α
in−1

∑
in

λαin =
∑

i1,...,in−1

|∆i1|αλαi2 . . . λ
α
in−1

= · · · =
∑
j

|∆j|α = C

because
∑r

j=1 λ
α
j = 1. That gives us our estimate from above by

Lemma 6.3. We have shown that dimH C ≤ α.
Now we need to estimate from below, which is more challenging.4

We shall show that dimH C ≥ α using Lemma 6.4.
Consider a finite cover U = {∆i1,...,in} of basic sets, where we al-

low basic intervals of different n’s to be chosen. We require that⋃
∆i1,...,in ⊃ C. For any ε > 0, there exist m such that |∆i1,...,im| < ε.

Therefore, U is an ε-cover.
Now, consider ∑

|∆i1,...,in|α

Pick |∆i1,...,im|m with the smallest m. We then have

|∆i1,...,im|m = |∆i1|αλαi2 · · ·λ
α
im = |∆i1|αλαi2 · · ·λ

α
im · (λ

α
1 + λα2 )

= |∆i1|αλαi2 · · ·λ
α
im · λ

α
1 + |∆i1|αλαi2 · · ·λ

α
im · λ

α
2 .

This means that that we can replace ∆i1,...,im with two elements of
the next level in our sum. We can therefore replace it in our cover

422 July 2010
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with the two new elements. Repeating this procedure, we obtain every
subinterval at the l-th level of the Cantor construction. Therefore,∑

|∆i1,...,in|α =
∑
i1,...,il

|∆i1,...,il |α =
r∑
j=1

|∆j|α,

which is a fixed number. This is a remarkable property of covers of
basic sets. We shall use this to bound the box dimension from above.

We can produce a cover by intervals with size of exactly ε, and it
should have the smallest possible number of elements. Here is a clever
trick.

Take a point x ∈ C. This point is coded:

x = (i1, i2, . . . in, . . . ) =
⋂

∆i1,...,in .

Along this sequence, we write a corresponding sequence of ratio coef-
ficients: (λi1 , . . . λin). We can choose a sufficiently small ε such that
λi1 > ε. If λi1λi2 < ε, we stop here. Otherwise, we consider λi1λi2λi3 .
Continuing, we reach a point at which

λi1 · · ·λim−1 > ε

λi1 · · ·λim ≤ ε

This gives us a cutoff time, and we get

ε min
1≤j≤r

λj ≤ |∆i1,...,im| ≤ ε

is close to ε. Declare this to be an element of our cover. Now, consider
any point not in this set and repeat, yielding more intervals ∆j1,...,jk .
This gives finitely many disjoint basic sets, each of which has length
almost ε. (Finite follows from compactness.)

Remark. Are the ∆i1,...,in open or closed? Consider the set Σ+
2 =

{(i1, . . . , in, . . . )} and the coding map h : Σ+
2 → C. We want to choose

sets such that

h(Ci1,...,in) = ∆i1,...,in .

These sets Ci1,...,in are

Ci1,...,in = (j1, . . . , jn, . . . )

where j1 = i1, . . . , jn = in. This is called a cylinder. We have a metric
in the space of cylinders:

d(ω(1), ω(2)) =
∑ |i(1)

j − i
(2)
j |

2j
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So our question becomes: Is Ci1,...,in open or closed? Actually, these
cylinders are clopen; this is a peculiar property of Σ+

2 . This is because
we have a discrete topology.

So ∑
|∆i1,...,in|α =

r∑
j=1

|∆j|α

is finite. The only problem is that the sizes of the intervals are not
precisely ε; they are a bit less. We fix this by expanding each interval
in the cover by a little bit to make each have length precisely ε. After
expansion, we have∑

|Ii1,...,in|α =
1

minλj

r∑
j=1

|∆j|α,

and by analogous results to Lemmas 6.3 and 6.4, we get our result for
box dimensions.

We still need to prove that dimH C ≥ α. We will use Lemma 6.4.
Choose any ε > 0 and consider a cover U = {B(xi, ri)} = {Ii}. For
any point x = (i1, i2, . . . , in, . . . ) ∈ C, we have an interval Ii ∈ U that
contains x. Define r = |Ii|. We have a cutoff time m such that

λi1 · · ·λim−1 > r

λi1 · · ·λim ≤ r.

Therefore, we have the basic set ∆i1,...,im , where m = m(Ii) = m(|Ii|)
depends on the length of Ii. The idea is to replace the Ii with ap-
propriate basic sets to obtain a cover by basic sets. Then, as be-
fore, the sum will become a constant, and we will be able to estimate∑
rαi = 1

2

∑
|Ii|α.

We know two things about the basic sets:

x ∈ ∆i1,...,im

rminλj ≤ |∆i1,...,im| ≤ r.

Instead of using Ij to cover, we need to choose intervals Aj that is
around twice as big as Ij that is associated with a basic interval ∆i1,...,im .
These Aj’s form a cover. Then,∑

rαi =
1

2

∑
|Ii|α ∼

∑
|∆i|α ∼ |∆i1,...,im |α.

Therefore, we are done by Lemma 6.4. �
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7. Further Ideas in Dynamical Systems

We want to understand the meaning of the formula
r∑
i=1

λαi = 1.

In particular, what is the dynamical interpretation of the number α?
Our proof of Moran’s theorem used fractal geometry; we want to con-
sider its implications in dynamics.

7.1. Markov Processes. We now want to consider the linear map
that we considered a few days ago in Section 4.2. Here, the invariant
set is a Cantor set C. Note that f(C) = C is a repellor for f . Recall
that dimH C = α such that λα1 + λα2 = 1. This is too simple; we want
to have something more complicated. We put this on hold.

Definition 7.1. Define

Σ+
2 = {ω = (i1, i2, . . . , in, . . . )}, i = 1, 2, . . . .

Let A = (aij) be an r × r matrix with all entries equal to 0 or 1. This
is called a transition matrix.

Example 7.1. For example, consider

A =

(
0 1
1 1

)
.

This means that the transition from 1 to 1 is not allowed, but the other
transitions are allowed. This produces a graph with r vertices.

Let Σ+
A be the sequences allowed by this matrix; this is a subset

Σ+
A ⊂ S+

2 :

Σ+
A = {ω = (i1, i2, . . . )}, ainin+1 = 1.

Note that S+
A is an invariant subset under the shift map. It is also

closed.
Note that this yields a map σ that is called a subshift of finite

type.

Σ+
A

σ //

h

��

Σ+
A

h

��
C // C

Apply these transition rules to the Cantor set construction, and erase
all ∆i1,...,in that have sequences (i1, . . . , in) that are not allowable.
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Definition 7.2. Define a new type of Cantor set by

C =
⋂
n≥0

⋃
(i1,...,in)
allowable

∆i1,...,in)

This is called a Markov Cantor set construction. Note that what
happens at one step does not depend what happened before; the events
are independent and the process has no memory. In our case, we have
one step of memory; it only depends on the previous step. This is a
Markov process.

Is there a good formula for the Hausdorff dimension of this type of
construction? This should depend on the matrix chosen.

Here’s some motivation for considering these new constructions. Our
dynamical system before was modelled by Σ+

2 . We can consider much
bigger classes of systems if we allow them to be modelled by S+

A .

Definition 7.3. The map f : ∆1∪∆2 → [0, 1] is a Markov map if the
following holds: If f(∆i)∪∆j 6= ∅ then f(∆i) ⊃ ∆j. This is called the
Markov property. The simpler example we considered earlier is called
the full-branched Markov map.

Example 7.2. As before, we use a linear map on ∆2. Our map on ∆1,
however, doesn’t have range in all of [0, 1]. Instead, it has range ∆2.

In this example, f(∆1) ∩∆1 = ∅ and

f(∆1) ∩∆2 6= ∅ =⇒ f(∆1) ⊃ ∆2.

Similarly, f(∆2) ⊃ ∆1 and f(∆2) ⊃ ∆2. It is easy to see that this map
is Markov.

We consider the repellor for this map. It turns out that this is pre-
cisely the Markov Cantor set construction that we did in the previous
example 7.1.

7.2. Nonlinear Case. Now, what if we replace the linear pieces in
our simple linear example by nonlinear pieces? We set the condition
that |f ′(x)| > 1. This is to ensure that our limit set is a repellor,
which is the core of chaotic behavior. We study f : ∆1 ∪∆2 → [0, 1].
Here, |f ′(x)| > a > 1. By a similar construction that we did earlier,
we obtain a Cantor set C that is invariant and it is a repellor. We still
have our coding map h : Σ+

2 → C. This means that the number of
periodic orbits of order n is 2n, and the total number of periodic orbits
is infinite countable. This is identical to the linear case.

Question. What is the Hausdorff dimension for this Cantor set? Does
it do anything to the dynamical characteristics of this system?
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7.3. Nonrigorous Introduction to Lyapunov Exponents. Define
λ1 = |∆1| and λ2 = |∆2|. Then

f ′(x) =

{
λ−1

1 x ∈ ∆1

λ−1
2 x ∈ ∆2.

We want to have that

|∆i1,...,in| =
n∏
j=1

λij ∼ λn.

This number λ could be computed as

λ = lim
n→∞

1

n
log

n∏
j=1

λij = lim
n→∞

1

n

n∑
j=1

log λij = − lim
n→∞

n∑
j=1

log f ′(f j(x))

= − lim
n→∞

1

n
log

∞∏
j=1

f ′(f j(x))

if the limit existed. We’ll consider the basic idea now and fill in rigor
later.

Now, starting from a point x and a basic interval ∆i1,...,in containing
x, we would have

|∆i1,...,in| ∼
∞∏
j=1

f ′(f j(x)).

Definition 7.4.

λ(x) = lim
n→∞

1

n
log

∣∣∣∣∣
n−1∏
j=0

f ′(f j(x))

∣∣∣∣∣
is the Lyapunov exponent of x.

For a physics paper, this would be perfect. For a mathematical
paper, we have a problem: How do we know that this limit exists? It
doesn’t have to. We’re going to consider only points where it does exist
(good points), and ignore points where it does not (bad points). Most
points will be good.

7.4. Measure. Recall that we have considered three examples of maps
– the full-branched Markov map, the general Markov map, and non-
linear Markov maps. We are interested in their Hausdorff dimensions.
We work over Σ+

2 ; it is easy to replace 2 with other numbers.5

526 July 2010
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Let 0 < p < 1 and q = 1 − p. From a probabilistic point of view,
we have a sequence of independent events. This random probabilistic
process can be interpreted by putting a measure on this space.

Example 7.3. Say we want to put a measure on the interval [0, 1]; this
can be thought of as some notion of length. For example, we can write
that the length of interval [a, b] is l([a, b]) = |b− a|. We can extend to
countable collections of intervals. In order to define length, we need
to have some basic sets; in this case, we can use intervals. We should
have the property

l
(⋃

[ai, bi]
)
≤
∑
|bi − ai|

with equality if they are all disjoint. This is a notion of subadditivity.
We now do something analogous to the Caratheodory construction that
we considered earlier.

Here, we use λ(Z) = mH(Z, 1). This gives a measure that is an
extension of the notion of length.

If we define length in the whole line, there is a transformation x 7→
x+ a. Then l(A) = l(A+ a). This is the only measure on the line with
this property.

We give a very general way of building measures. Our basic sets will
be cylinders

Ci1,...,in = {ω ∈ Σ+
2 : ω = (j1, . . . , jn), j1 = i1, . . . , jn = in}.

Definition 7.5. Define a measure

mp(Ci1,...,in) = panqn−an ,

where an is the number of 1’s in the n-tuple (i1, . . . , in).
Since any two cylinders are disjoint, declare the measure of a collec-

tion of cylinders as a sum; this then satisfies additivity and subaddi-
tivity. This is known as the Bernoulli measure.

This measure has an interesting property. Note that

µp(E) = µp(σ
−1(E)).

This is because

σ−1(Ci1,...,in) =
r⋃

i0=1

Ci0,i1,...,in .

Then

µp(σ
−1(Ci1,...,in)) = µp

(
r⋃

i0=1

Ci0,i1,...,in

)
=

r∑
i0=1

µp(Ci0,...,in).
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Our commutative diagram then gives measures for our basic sets. So

µp(∆i1,...,in) = panqn−an .

This gives a measure on Cantor sets. We put a measure on the repellor,
which had measure zero. This repellor has full measure under our new
measure. We study some characteristics of the measure.

8. Computing Dimension

8.1. Entropy. This is one of the major characteristics of invariant
measures. For each such measure, we can define the notion of entropy.
For µp, we’ll make an idea of entropy that is convenient; this won’t
work for a general measure. There are whole courses about entropy of
dynamical systems, and we don’t have time to be too general.

Pick ω ∈ Σ+
2 , ω = (i1, . . . , in, . . . ) and a cylinder Ci1,...,in . Then as

n→∞, we want
µp(Ci1,...,in) ∼ e−hn

for some h > 0. If this is the case, h is the entropy.

Definition 8.1.

h(ω) = hµp(ω) = − lim
n→∞

1

n
log µp(Ci1,...,in)

is the entropy.

8.1.1. Entropy of Bernoulli measure. We want to compute this for our
Bernoulli measure. Then

h(ω) = − lim
n→∞

1

n
log
(
panqn−an

)
= − lim

n→∞

1

n
(an log p+ (n− an) log q)

= −
(

lim
n→∞

an
n

log p+
(

1− lim
n→∞

an
n

)
log q

)
.

The existence of this limit boils down to the existence of limn→∞
an
n

.
Simple probability suggests that this limit is p. If this were true, we
would get that

h(ω) = −(p log p+ q log q).

This is the entropy of µp; this does not depend on ω.
There is a subtle question: For which ω does this limit exist? We

postpone discussion of this for now; however, this is true for the “ma-
jority of points”.

Consider the function

φ(p) = −(p log p+ (1− p) log(1− p)).
We can draw its graph. It is zero at p = 0 and p = 1; it looks like
a bump. There is a maximum at p = 1

2
. For this p, the entropy is
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maximal. So µ1/2 is called the the measure of maximal entropy.
This matches physical common sense; a fair coin is most chaotic.

8.2. Lyapunov exponent. Consider this notion of entropy on our
Cantor set. Recall the Lyapunov exponent

λ(x) = lim
n→∞

1

n
log

∣∣∣∣∣
n−1∏
j=0

f ′(f j(x))

∣∣∣∣∣ = lim
n→∞

1

n

n−1∑
j=0

log |f ′(f j(x))|

= − lim
n→∞

1

n

n−1∑
j=0

log λij = − lim
n→∞

1

n
log

n−1∏
j=0

λij

= − lim
n→∞

1

n
log λan1 λ

n−an
2

= −
(

lim
n→∞

1

n
an log λ1 +

(
1− lim

n→∞

1

n
an

)
log λ2

)
= −(p log λ1 + q log l2).

This exists whenever the previous limit exists. The formulas for entropy
and the Lyapunov exponent are very similar.

8.3. Pointwise dimension.

Definition 8.2. Now, pick a point x ∈ C, x = (i1, ι2, . . . ). Define

dµp(x) = lim
n→∞

log µp(∆i1,...,in)

log |∆i1,...,in|

This is the pointwise dimension of µp at x.

Once again, there is the question of whether the limit exists; we
postpone this yet again. We compute this:

dµp(x) = lim
n→∞

1
n

log µ(∆i1,...,in)
1
n
|∆i1,...,in|

=
p log p+ q log q

p log λ1 + q log λ2

=
p log p+ (1− p) log(1− p)
p log λ1 + (1− p) log λ2

=: ψ(p).

This again looks like a bump that is zero at p = 0 and p = 1. There is a
maximum at λα1 , where ψ(λα1 ) = α. The highest value of the pointwise
dimension is the Hausdorff dimension. This is key. Let µλα1 be the
measure of maximal dimension.
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8.4. Computing the dimension. To compute the dimension of the
repellor, find the measure of maximal dimension. This gives a good
way of computing the Hausdorff dimension.

We can interpret this differently; the dimension is the quotient of
entropy over Lyapunov exponent:

dimH C =
hµp
λµp

.

This is good for computation. The only problem is to find the mea-
sure of maximal dimension. This formula ties together three important
quantities in the subject; the formula relates fractal sets, chaos, ran-
domness, and instability. This is beautiful.

Remark. We still need to see why our limits exist, and we still need
to construct measures of maximal dimension.

The limit limn→∞
1
n
an is an asymptotic frequency of ones. We believe

from probability that this should exist; the frequency of independent
events is an mathematical expectation. This is a corollary of probabil-
ity. This limit must exist, but not necessarily for all orbits; it exists
for almost all orbits; bad orbits have measure zero. This is a fact from
probability theory that we will not prove.

Joke. This was first told by Littlewood; the precise source is unclear.
There was a big party, and there was a probabilist. He suggested that
they bet: Count 100 people, and there will be between 45 and 55 men.
So they bet, and counted 100 people. At that moment, 100 soldiers
went by, and the probabilist was ashamed.

The moral is that if you make a bet on a large number, there is a
small chance that things will be go wrong. It’s just that the number
100 is too small.

The limit exists for a set of full measure. Therefore, this is true
for the entropy and the Lyapunov exponent. Hence, it is true for the
pointwise dimension as well.

8.5. Markov measure. Consider Markov constructions. We wish to
define Markov measure. Everything called “Markov” is named after a
Russian mathematician who pioneered these notions.

Definition 8.3. Define P = (pij) to be a stochastic matrix if 0 ≤
pij ≤ 1,

∑n
i=1 pij = 1.

The transition matrix A = (aij) has aij = 1 when pij > 1, and 0
otherwise; it is defined by the stochastic matrix.
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Recall that we have the set

Σ+
A = {ω = (i1, . . . ) : pinin+1 > 0}

We also need the probability vector p̄ = (p1, . . . , pr). It is sufficient
to define a measure on a cylinder.

Definition 8.4. The Markov measure is

µP,p̄(Ci1,...,in) = pi1Pi1i2Pi2i3 · · ·Pin−1in .

This is used to carry out the calculation of the Hausdorff dimension.
This calculation is straightforward. In nonlinear cases, the calculation
of entropy is the same, but the Lyapunov exponent is much messier.

Example 8.1. In the case of the linear full-branched Markov map. If
we have λ := λ1 = λ2, then it is easy to show that λ(x) = − log λ. This
is true for every x, without exceptions. In the case p = 1

2
, we also have

hµ1/2
= log 2. The Hausdorff dimension is then

dimH C = − log 2

log λ
.

This is an exceptional case where there are no exceptions. However,
when we allow different slopes and λ1 6= λ2, we only have it is true
almost everywhere.

Remark. Given any point x ∈ C, µ(∆i1,...,in) ∼ |∆i1,...,in|dµ(x). We
would like to look at the points in C where dµ(x) = a is constant. This
is a better fractal than C because it has better self-similarity; the scale
of self-similarity is constant. Each value of a gives a real fractal, and
there are many real fractals packed in the Cantor set. Therefore, the
Cantor set is a multifractal. In the case of λ1 = λ2; the slope is
the same and the Cantor set is a pure fractal. This is unbelieveably
complicated structure generated from a piecewise linear function.

9. Two Dimensional Dynamical Systems

So far, we’ve only worked in a one-dimensional world. For the re-
maining three lectures, we will discuss the two-dimensional case. This
is more complicated, but the basic idea is the same: Use the measure
of maximal dimension. There are simple classes of dynamical systems
where we don’t know if such a measure exists. That is the frontier
of current research. We will start with a real model of propagation
of voltage through a neural system. We will show that everything is
governed by a simple two-dimensional dynamical system, and we’ll use
it to discover things in general. Going further up in dimension produce
more complicated phenomenon, though many ideas still hold. We are
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only considered low-dimensional dynamical systems; there are many
open questions in higher dimensions – we only opened the door to this
subject.

9.1. Fitzhugh-Nagumo Model. We discuss the FitzHugh-Nagumo
Model of an electrical signal through a neuron.6

Each neuron is composed of several parts: the dendrids going into
the soma, which has the axon as the only output. The signals go in
through the dendrids, excites the soma, and sends output to the axon.
The axon has length an order or two longer than the dendrids; it is a
very thin tube. The signal propagates through the tube. The question
is: What is the voltage in this tube at any time?

Let the length of the tube be parametrized by x, and let time be
given by t. We want to study the voltage U(x, t). There are several
different ways to model this. There is a very complicated Hutchinson
model that deals with all physical aspects, but that’s hard to use. We’ll
consider the FitzHugh-Nagumo model, which treats this as a circuit.

In biology, the models are called phenomenological models; they are
not based on fundamental laws. This is different from physics, where
they have fundamental laws (e.g. Maxwell’s Law). In biology, using
fundamental laws is hopelessly complicated and unrealistic. So they
forget about fundamental laws and find a simple model. They build
models by looking at physical characteristics, based on things like dif-
fusion or viscosity.

The FitzHugh-Nagumo model is

∂u

∂t
= −au(u− θ)(u− 1)− bv + k

∂2u

∂t2

∂v

∂t
= cu− dv

The term k ∂
2u
∂t2

is the diffusion term. It is very small. This model has
parameters, and they have biological meanings.

9.2. Interpretation of the Model.

Joke. A teacher was explaining to some students that the Riemann
hypothesis, and the students said to tell the computer to do it.
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One way to study this equation is to ask the computer to do it for
us. This is done by approximations for the derivatives:

∂u

∂t
7→ u(x, t+ ∆)− u(x, t)

∆
∂2u

∂x2
7→ u(x+ ∆, t)− 2u(x, t) + u(x−∆, t)

∆2
.

We now replace continuous space with discrete space by defining

uk(n) = u(k∆, u∆)

vk(n) = v(k∆, u∆).

This yields

uk(n+ 1) = uk(n)− a∆uk(n)(uk(n)− θ)(uk(n)− 1)− bvk(u)

+ k
uk+1(n)− 2uk(n) + uk−1(n)

∆
vk(n+ 1) = vk(n)− d∆vk(n) + c∆uk(n).

Simplifying gives

uk(n+ 1) = uk(n)− A(uk(n)− θ)(uk(n)− 1)− αvk(n) + kguk(n)

vk(n+ 1) = vk(n)− βuk(n) + δvk(n).

The interpretation of this model is to produce a discrete lattice on the
line. Due to the length of the axon, we consider the whole line. At
each point on this lattice, we have a plane. On each such plane, we
have a two-dimensional map, namely

f(u, v) = (f1(u, v), f2(u, v))

f1(u, v) = u− Au(u− θ)(u− 1)− αv
f2(u, v) = βu+ γv.

So moving along n in the above formulas is equivalent to studying the
trajectories of this two-dimensional system. The computer approxi-
mates this solution to the PDE by writing this dynamical system and
iterating.

What happens for a given k does not influence the behavior at k+ 1
except for the behavior of the diffusion term. The diffusion term forces
neighbors to interact; this is called an interaction term. Without
this term, this is an independent dynamical system. Note that the
diffusion term is very small. Therefore, for the first approximation
of what happens, we can drop it. We’ll see what happens without
interaction, and add the interaction later. With the interaction term,
this is called a coupled map lattice.
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So now, well just study this two-dimensional map and forget the
little interactions.

Remark. There are several parameters here. There are physical or
biological explanations for these parameters, and we want to have θ ≈
1
2
. In addition, γ = 1 − d∆ < 1, and α, β are very small (or even

extremely small). A is called a leading parameter, which means
that this is a parameter that we will vary. We want to see how the
dynamics change when we change A. This is the only parameter that
we will change. This is responsible for concentrations of molecules of
the axon, controlling the strength of the signal.

What happens in the discrete model may not be the behavior of the
PDE. When A is small, the solutions of the discrete are close to the
solution of PDE. The only way to prove this is through computations
and empirical evidence. As A gets bigger, the solutions of the discrete
system do not produce solutions of the PDE system. Why should we
study them?

This is an idea that first came in the work of Kaneko, a great Japan-
ese scientist, in around 1983. He published a paper asking why the
discrete system is any worse as a phenomenological model as the PDE;
it could be just as good. They compared each model against real ex-
periment. It turns out that for sufficiently large A and for certain other
values of parameters, the discrete system describes real neurons better
than the PDE. (This depends on the type of neuron.) So the discrete
system has its own legitimacy outside of its relationship to the PDE,
and in any case, it is mathematically interesting. As mathematicians
(unlike real scientists), we like the system and ignore everything else;
we are not responsible for interpretation of results.

9.3. Studying the Discrete System. We leave the world of neurons
and PDEs, and focus on the discrete system. This two-dimensional
system is called the local map – the behavior at each local site.

The system is

f(u, v) = (u− Au(u− θ)(u− 1)− αv, βu+ γv)

with θ ≈ 1
2
, 0 < γ < 1, α, β ≈ 0.

First, we study the fixed points of the map, where f(u, v) = (u, v).
To do this, we should solve

u = u− Au(u− θ)(u− 1)− αv
v = βu+ γv.
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The three fixed points are then

u0 = 0, v0 = 0

u1,2 =
1

2

(
θ + 1±

√
(θ − 1)2 − 4αβ

A(1− γ)

)
, v1,2 =

βu1,2

1− γ
.

Of course, if the quantity inside the radical is negative, (0, 0) is the
only fixed point. So:

0 < A < A0 =
4αβ

(1− γ)(1− θ)2
=⇒ (0, 0) is the only fixed point

A > A0 =⇒ there are 3 fixed points

We are now interested in the stability of these fixed points: attracting,
repelling, or hyperbolic? To do this, we study the Jacobian matrix

Df(x) =

(∂f1(u,v)
∂u

∂f1(u,v)
∂v

∂f2(u,v)
∂u

∂f2(u,v)
∂v

.

)
We compute this matrix at a fixed point, and we look at the eigenval-
ues. The eigenvalues tell us which type of stability we have. In this
particular case, we see that this matrix is

Df(x) =

(
1− Aθ + 2A(1 + θ)u− 3Au2 −α

β γ

)
.

Substituting u = 0, we obtain

Df(0) =

(
1− Aθ −α
β γ

)
,

and we can work out the eigenvalues. We are insufficiently courageous
to do this for the other eigenvalues. We try a better idea: Using the
fact that α, β are very small; three orders less than the other numbers.
So the Jacobian matrix is approximately

Df(x) ≈
(

1− Aθ + 2A(1 + θ)u− 3Au2 0
0 γ

)
.

We want to be mathematically rigorous. First, we study this case. As
long as u is not too big, everything depends continuously on α and
β, so dropping those terms won’t change the type of behavior of the
eigenvalues, and we can judge the type of behavior without α and β;
that’s a rigorous mathematical statement.

By this simplification, we obtain

Df(0) ≈
(

1− Aθ 0
0 γ

)
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so that γ is always an eigenvalue. So there is always a contracting
direction. Hence, we have an attracting point or a hyperbolic point;
it can’t be a repellor. If |1 − Aθ| < 1, we have an attracting point; if
|1− Aθ| > 1, we have a hyperbolic point.

Before A0, the behavior is very simple; everything contracts to 0.
After A0, we must consider the other fixed points. At P1 = (1, 0) we
obtain that

Df(P1) ≈
(

1 + Aθ − Aθ2 0
0 γ

)
,

which is always hyperbolic. At P2,

Df(P2) ≈
(

1 + Aθ − A 0
0 γ

)
,

so if 0 < A < A′1 ≈ 2
1−θ then P2 is attracting. If A > A′1 then P2 is

hyperbolic.
The final outcome is that there are several possibilities:

(1) Everything contracts to the origin.
(2) 0 and P2 are attracting while P1 is hyperbolic. (Draw a phase

portrait.) There are no periodic points and everything is simple.
(3) All three points are hyperbolic. The problem is that it seems

like there should be something attracting. In fact, there are
attracting periodic orbits of period 2.

In this last case, our system is too complicated. We study a simpler
example and come back to this later.

9.4. A Great Example. We give one of the greatest examples of
mathematics. There is more about this than any other dynamical sys-
tem. Consider

f(x) = x2 + c.

What if we choose c to be really big? By drawing a picture, it is clear
that fn(x)→∞ for every x. Every trajectory goes to +∞.

This isn’t very interesting. We consider a smaller value of c. When
c = 1

4
, f(x) = x2 + 1

4
is tangent to y = x, so the point of tangency is a

fixed point. Points after the fixed point go to ∞, while some points in
an interval before the fixed point converge to the fixed point. Draw a
picture! Any sudden change in behavior is called a bifurcation. Then
c = 1

4
is the first bifurcation.

When c is a little bit less than 1
4
, then the graphs intersect twice and

we have two fixed points. We want to consider stability of these fixed
points P1 and P2. Then

f ′(Pi) = 1∓
√

1− 4c.
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So the lower fixed point attracts and the upper fixed point repels. We
have an attracting interval and everything else goes to ∞.

Do we have any periodic orbits of period 2? We need to solve f 2(x) =
x; we must solve

(x2 + c)2 + c = x =⇒ x4 + 2cx2 − x+ c2 = 0.

Factoring out the two fixed points, we get two periodic points

q1,2 = −1

2
∓
√
−3

4
− c.

So if −3
4
< c < 1

4
, there are no periodic orbits of period 2. But if

c < −3
4
, we suddenly get two more periodic orbits of period 2. What

happens there? This is when both fixed points become repelling. There
must be an attractor between two repellors, so we actually have an
attracting orbit of period 2.

As c decreases further, we get another bifurcation at c = −5
4
. This

is when our periodic orbit becomes repelling. We therefore must have
another attracting periodic orbit, and we actually get two periodic
orbits of period 4.

This process goes on, and new periodic orbits are born while old
periodic orbits become unstable. This is a fantastic picture – so much
complexity for such a simple map. There are infinitely bifurcation
points:

c1 =
1

4
, c2 = −3

4
, c3 = −5

4
, → c∞.

The behavior at each bifurcation points is different. The first bifurca-
tion is called a tangent (or saddle-node) bifurcation. The second
bifurcation is called a period doubling bifurcation because we dou-
ble the period of the periodic points. This yields a cascade of bifurca-
tions in an infinite process.

At this point, we discuss behavior of bifurcations without proof.
The bifurcation points converge to a number c∞, where the process
stops. At any point before that, there are finitely many periodic orbits
– this is a Morse-Smale system. Every trajectory must converge
to an attracting fixed point or periodic orbit. This constitutes fairly
simple dynamics. Each particular trajectory can be complicated, but
the overall picture isn’t too bad.

At this point, there are two questions. What happens after c∞, and
are there periodic orbits of other periods?

We have a jewel of one-dimensional dynamics called Sharkovski’s
Theorem from around 1960. He published it in an Ukrainian journal
and it went unnoticed. A couple years later, Li and Yorke wrote another
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paper where they proved part of Sharkovski’s Theorem. The two results
were independent due to the Iron Curtain; there were no connections
between the two sides. At some point many years later, this theorem
became known in the West, and produced a revolution.

Li-Yorke’s paper has a pretentious title: “Period 3 Implies Chaos”.

Theorem 9.1 (Li-Yorke). Consider a one-dimensional dynamical sys-
tem x 7→ f(x), x ∈ R1. Assume that f has a periodic orbit of period 3.
Then for every n ≥ 3, f has a periodic orbit of period n.

Theorem 9.2 (Sharkovski). We list all natural numbers in the follow-
ing way:

3, 5, 7, 9, · · ·
2 · 3, 2 · 5, 2 · 7, 2 · 9 · · ·
22 · 3, 22 · 5, 22 · 7, 22 · 9 · · ·

...
· · · 2n, 2n−1, · · · , 22, 2, 1.

Write n < m if n is before m in this list. This is a new ordering of the
natural numbers. If f has a periodic orbit of period n then for every
m > n, it has a periodic orbit of period m.

In particular, the only way to have finitely many periodic orbits, we
have to stop at periods of 2n.

Remark. The FitzHugh-Nagumo model is effectively a one dimen-
sional system represented by a cubic equation. The period doubling
also occurs in this case as A changes. So there’s a point A∞. We’ll
spend the next two lectures talking about two phenomena that we can
see near A∞, and we’ll do some mathematical speculation.

10. Nonlinear Two Dimensional Systems

10.1. Approximation by the Linear Case. Suppose we are on the
plane, and we have a hyperbolic point with expansion µ in the y-
direction and contraction λ in the x-direction.7 This matrix of the
map is therefore

A =

(
λ 0
0 µ

)
.
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Now consider any map; in a small neighborhood of a hyperbolic fixed
point, we can write it as

f(x, y) = (f1(x, y), f2(x, y))

f(0, 0) = (0, 0)

f(x, y) = f(0, 0) +

(
∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

)∣∣∣∣∣
(0,0)

(x, y) + εg(x, y).

Therefore, we can write any map as f(x, y) = A(x, y) + εg(x, y), so it
becomes

f(x, y) = (λx+ εg1(x, y), µy + εg2(x, y)).

Here, the gi are of higher order, so we can write

gi(0, 0) = 0

∂gi
∂x

(0, 0) =
∂gi
∂y

(0, 0) = 0.

In addition, we need to have that

|dg(x, y)| ≤ c

for all (x, y) in a small neighborhood. This is the Taylor decomposi-
tion in two variables. Therefore, for nonlinear maps, we need a small
correction in the non-linear term. There is no longer any guarantee
that points on the x axis stay on the axis. This suggests a question: Is
there a curve such that points on the curve stay on the curve? This is
a substitute for the x-axis. Assume that we can. Then a similar argu-
ment could be made for the vertical axis – points on that curve would
move toward 0 under the inverse map. Note that here the behavior is
very similar to the linear case with some distortions. The difference
between the linear and nonlinear case is that lines become curves and
we only know things about behavior in a small neighborhood.

Definition 10.1. Such a stable curve is called a stable curve (sepa-
ratrix) and the analogous unstable curve is called an unstable curve
(separatrix).

The existence of such curves is called the Grobman-Hartman The-
orem. An earlier version of the theorem is called Hadamard-Perron
Theorem.

10.2. Attractors. We will now consider some consequences of these
results.

Suppose we take a point on the stable curve. If we move it forward,
it moves toward the origin. What if we move it back? It will eventually
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leave the neighborhood where we can do our local analysis, and we lose
control of it. If might wander back to our neighborhood eventually.

To see how these preimages behave, we can consider preimages of a
separatrix, and we move it further and further back. It might behave
strangely, but we can do this. We can do this around every hyperbolic
point, in which case we get more separatrices. This quickly becomes
complicated. Can two stable separatrices intersect? No: One point
cannot go to two different points, so the stable separatrices never cross.
However, stable and unstable separatrices can intersect.

Definition 10.2. The point of intersection of a stable and an unstable
separatrix is called a heteroclinic point.

At heteroclinic points, the positive and negative iterates lie on dif-
ferent separatrices. This was first discovered by Poincare.

Recall that we have period doubling behavior. Our periodic points
eventually become hyperbolic points, which generates more separa-
trices. So we get an unbelievably complicated structure with lots of
packed separatrices. It’s too complicated to even draw a picture.

Now, we let A grow until A→ A∞, where there are countably many
periodic orbits, each of which is hyperbolic. As we pass A∞ and let A
get large, we can draw a rectangle R containing the three fixed points
0, P1, P2 such that f(R) ⊂ R.

Theorem 10.1. For every 0 < γ < 1 and every β > 0 small enough,
there exists A′ > 0 such that for each 0 < A < A′, there exist R 3
0, P1, P2 and f(R) ⊂ R.

This means that once a point gets inside of R, it cannot escape.

Definition 10.3. Such a rectangle R is called trapping region.

We can now look at the images of R:

R ⊃ f(R) ⊃ f 2(R) ⊃ f 3(R) ⊃ · · · .

Consider

Λ =
⋂
n≥0

fn(R).

Note that by definition, Λ is an attractor: it is an intersection of
trapping regions. So Λ attracts all trajectories that sit in R; if x ∈ R
then fn(x)→ Λ.

Theorem 10.2. Λ is the largest invariant set. This means that f(Λ) =
Λ.
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Proof. Consider

f(Λ) = f

(⋂
n≥0

fn(R)

)
=
⋂
n≥0

f(fn(R))

=
⋂
n≥0

fn+1(R) =
⋂
k≥1

fk(R) = Λ.

Therefore, Λ is an invariant set. Now suppose there were an invariant
set Z ⊃ Λ. Then f(Z) = Z, and it must be Λ. �

In the case where there are three fixed points, the attractor contains
those points. As structure gets more complicated as A increases, all
fixed points and all periodic points must be in the attractor. As A
passes A∞, the structure of this attractor becomes much more compli-
cated.

Theorem 10.3. Take a hyperbolic fixed point x ∈ Λ. Let γs(x) be the
stable separatrix and let γu(x) be the unstable separatrix. We claim
that γu(x) ⊂ Λ.

Proof. We prove this by contradiction. Suppose y ∈ γu(x) but y /∈ Λ.
Say that y ∈ R is in the trapping region; otherwise there is nothing
to do. Consider its positive trajectory fn(y). This also lies in the
trapping region; for every n > 0, fn(y) ∈ R. Now consider the negative
trajectory; then for every n < 0, fn(y) converges to x, and hence
fn(y) ∈ R. Therefore, fn(y) ∈ R for every n.

Let Z = Λ ∪ {fn(y)} ⊃ Λ, which is a contradiction to the previous
theorem 10.2. �

So the attractor is bigger than simply the fixed points; it includes
unstable separatrices.

Remark. We see from numerical calculations that the previous results
of Sharkovski’s Theorem 9.2 seem to hold for the FitzHugh-Nagumo
map. However, Sharkovski’s Theorem only holds in one dimension.
There is no rigorous reason for this to be the case; it’s an open problem.
There is overwhelming numerical evidence, however.

What do the attractors look like? There are infinitely many periodic
orbits, and is it very complicated. We can compute it numerically, and
the pictures exist in Google. Note that this is only numerical evidence.
There is no rigorous theory yet.

We want to analyze two things: How do we know that there exists a
stable or unstable separatrix? What is the structure of the attractor?
We postpone the proof of the existence of separatrices. It is important,
but we don’t have time.
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10.3. Construction of an Attractor. We consider the construction
of an attractor. We consider a model that is simpler so that we can
actually prove things. The model is three-dimensional – it is more
complicated in dimension, but in all other aspects it is simpler.

Consider a map f : P = D2 × S1 → P . Here, P is a solid torus. We
make a coordinate system on P . Note that D2 = {(x, y) : x2 +y2 = 1},
so coordinates on D2 are given by x and y. Coordinates on S1 are
given by a parameter θ. Then let

f(x, y, θ) = (λx+ r cos θ, µy + r sin θ, 2θ),

where 0 < λ < µ < 1 and r > 0. Choose r appropriately so that this
map actually takes P into P . We want to see what f(P ) looks like.

We can cut the solid torus P and unfold to obtain a solid cylinder.
Multiply the x-coordinate by λ and the y-direction by µ, and double
the length by θ 7→ 2θ, so that it looks like an elliptical sausage.

We fold it back into the solid torus P . Note that because it’s twice as
big, we have to curl it around P twice. A picture would really help here.
That’s precisely f(P ). Here, we need to make sure that f(P ) should
fit inside P , so r needs to be small enough. Since P is an attracting
region, we have f(P ) ⊂ P .

Now consider the attractor

Λ =
⋂

fn(P ).

Consider the cross section of the solid torus by a plane. Locally, this
looks like D2×[−ε, ε]. We end up getting lots of pairs of nested ellipses;
a picture is needed. I should figure out how to draw pictures.

Exercise 10.1. In one set of nested ellipses, the ellipses will be verti-
cally positioned; in the other, the ellipse will be horizontally positioned.
This is an effect of sin and cos is left as an exercise.

Clearly, this is a Cantor-like procedure, and we end up with a Cantor
set in each cross section.

In our slice, we therefore have that the attractor is

Λ ∩D2 × [−ε, ε] = C × [−ε, ε].

We want to see the global picture. From a point in the Cantor set, we
go around the torus and come back to a different point on the Cantor
set, and repeat forever. This gets a countably many number of points.
Repeating with other points, we obtain the whole attractor. It is called
the Smale-Williams Solenoid, and it is a fractal-like set, kind of like
C × S1, but not really.
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Consider any point x ∈ Λ. Then df(x) is clearly a 3 × 3 triangular
matrix:

df(x) =

λ 0 − sin θ
0 µ cos θ
0 0 2

 .

The eigenvalues are therefore λ, µ, 2. Therefore it is hyperbolic: It has
two directions of contraction and one direction of expansion; there is a
two-dimensional stable set (a disc) and a one-dimensional unstable set
that lies in the attractor. So every point here is hyperbolic. Therefore,
Λ is a hyperbolic attractor. It is the first example of a hyperbolic
example ever known in dynamical systems.

We are interested in the Hausdorff dimension of our attractor. We
make things simpler, we consider the case where λ = µ. In this case, we
have circles and we can apply Moran’s formula 5.5. From λα +λα = 1,
this yields

dimH C =
log 2

− log λ
,

which is the entropy divided by the Lyapunov exponent. Now, the
Hausdorff dimension of Λ should be

dimH Λ =
log 2

− log λ
+ 1.

However, the Hausdorff dimension of the product is not in general the
sum of the Hausdorff dimensions. However, we have a theorem

Theorem 10.4 (Besicovich). dimH A × B = dimH A + dimH B if
dimBA = dimBB = dimH A.

We omit the technical proof. This gives us our formula for dimH Λ.
Now, what if λ < µ < 1

2
? The result is still the same; µ does not

affect the Hausdorff dimension. This is very difficult; it was an open
problem for around twenty years, and it was solved around ten years
ago.

10.4. Hadamard-Perron Theorem. We now prove the Hadamard-
Perron Theorem about the existence of stable curves.8

Proof. Consider a map on the plane given by

f(x, y) = (λx+ εg1(x, y), µx+ εg2(x, y)).

As we discussed earlier, we can write this as f(x̄) = Ax̄+ εḡ(x), where

A =

(
λ 0
0 µ

)
= df(0).

829 July 2010
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We would like to find a stable curve γs = (x, φ(s)) that is the graph of
y = φ(x). We require that

φ(0) = 0

dφ

dx
(0) = 0∣∣∣∣dφdx(x)

∣∣∣∣ ≤ L.

The invariance of this curve under the map f is given by the condition
that f(x, φ(x)) is the point of the graph of f . We now have

f(x, φ(x)) = (λx+ εg1(x, φ(x)), µy + εg2(x, φ(x))).

We want this to lie on the graph, which means that

φ(λx+ εg1(x, φ(x))) = µφ(x) + εg2(x, φ(x)).

This allows us to solve for φ, yielding

φ(x) = µ−1φ(λx+ εg1(x, φ(x)))− εµ−1g2(x, φ(x)).

This is a functional equation for the function φ. How do we solve this?
We need to prove that this equation has a unique solution φ satisfying
our conditions.

Hadamard proved the existence of solutions. His method was to pick
any function ψ satisfying our conditions that

ψ(0) = 0

dψ

dx
(0) = 0∣∣∣∣dψdx (x)

∣∣∣∣ ≤ L.

We generate a new function via

ψ(x) 7→ ψ1(x) = µ−1ψ(λx+ εg1(x, ψ(x)))− εµ−1g2(x, y).

We note that the same properties hold for the new function ψ1. Iterat-
ing this transformation, we obtain a sequence of functions ψ1, ψ2, · · · .
These functions ψn(x) converge to a function φ(x) as n → ∞. This
follows from the condition that

φ(x) = µ−1φ(λx+ εg1(x, φ(x)))− εµ−1g2(x, φ(x)).

For this to work, we need to verify that the conditions on the derivative
do not change after iteration; we stay within the same class of functions.
We also need to verify that the sequence converges, and we need to see
what type of convergence we have. We won’t do all of the details;
instead, we’ll only give an idea of the proof.
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10.4.1. Conditions on the Derivatives. It is easy to see that ψ1(0) = 0.
To see the properties on its derivatives, we need to differentiate the
expression for ψ1 using the chain rule. This is a simple verification
that is too messy to type. We also need to show that the derivative
dψ1

dx
is bounded by the same constant as dψ

dx
. This is a bit trickier and

requires manipulating some inequalities. The point is that we have
estimates on each derivative by assumption, so we can use the triangle
inequality and the fact that 0 < λ < 1 < µ. In order to get our bound,
we have to shrink our neighborhood. If we choose a neighborhood
sufficiently small, our ε will be sufficiently small and the bounds will
work out.

10.4.2. Convergence. Now, we need to show that ψn(x) → φ(x). By
the Arzela-Ascoli theorem, we see that the ψn(x) does converge to a
continuous function. This is good, but not good enough; we don’t
know if φ(x) is differentiable. We need to go beyond the techniques
of standard calculus. Consider the set of all differentiable fucntions on
[−r, r] satisfying our conditions

ψ(0) = 0

dψ

dx
(0) = 0∣∣∣∣dψdx (x)

∣∣∣∣ ≤ L.

Call this space of functions A.
Define a map F : A → A satisfying (Fψ)(x) = ψ1(x). As we

just proved, this map moves A into itself. Hence, it is a well-defined
operator.

We introduce a metric into this space A defined by

d(ψ1(x), ψ2(x)) = max
x∈[−r,r]

|ψ1(x)− ψ2(x)|+ max
x∈[−r,r]

∣∣∣∣dψ1(x)

dx
− dψ2(x)

dx

∣∣∣∣ .
It is easy to check that this satisfies the properties of a metric.

Lemma 10.5. Now, take ψ1, ψ2 ∈ A, then

d(Fψ1,Fψ2) ≤ γd(ψ1, ψ2)

for some 0 < γ < 1.

This lemma is the end of the story; we would have that

d(ψn+1, ψn) ≤ γd(ψn, ψn−1) ≤ · · · ,
so
∑
ψn is a geometric series and hence it converges to some function

in the same space. Here, we used the fact that A is complete; this is
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the Arzela-Ascoli theorem. This operator is known as a contracting
operator. We omit the proof of the lemma. �

10.5. Smale Horseshoe.

f(u, v) = (u− Au(u− θ)(u− 1)− αv, βu+ γv)

We return to the FitzHugh-Nagumo map. We use the parameters A ≈
7.0 − 7.5, θ = 1

2
, and α, β are small. We previously considered the

attractor of this map. Given any point in the trapping region, we can
get to the attractor by iterating f . If we start to change A in the
range 0 < A < A′, we obtain bifurcations. We can plot trajectories,
and we’ll eventually get some kind of periodic picture. It would help
to draw something here. After we pass the bifurcations and get to
the attractors, our plot produces completely chaotic behavior; we get
forever random behavior because our attractor is chaotic. The cross
section of the attractor is a Cantor-like set, and trajectories chaotically
move around the attractor. If we cut the attractor into a number of
pieces, the coding will be entirely chaotic. Here, nothing is proven and
we only have numerical evidence and a conjecture. In the case of the
Smale-Williams solenoid, this result has been proven.

There is something even more interesting. When A′ < A < A′′

(approximately 8 < A < 10, though numerical evidence suggests this
is true for all A > 8), we can repeat the argument that we did before.
We no longer have an attracting region; some trajectories escape from
the trapping region. What is the set of points that will not leave the
rectangular trapping region? To answer this question, we consider a
simpler model.

10.5.1. A Simpler Model. Consider a rectangle R, and fix two numbers
0 < λ < 1 < µ. We contract the rectangle in the vertical direction by
λ and expand the rectangular in the horizontal direction by µ. The
picture looks like a long thin rectangle. We fold this new rectangle in
the shape of a horseshoe, and put it back into the original rectangle
R. This folding is done such that the horseshoe is straight inside R
and only bends outside of R. This is a map f : R → R2. A picture
would help here. Some points map out of R and can no longer be
iterated. We are interested in the set of points that can be iterated
twice; this set consists of two vertical strips of R; these strips are
precisely f−1(R ∩ f(R)). Geometrically, the set of points that can be
iterated three times consist of four strips – two substrips of each of
the two previous strips. Continuing this process, we see that the set of
points that can be iterated infinitely form the product of a Cantor set
with an interval. This can be seen by a proof by picture. We know the
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lengths of the Cantor intervals because the ratio coefficient is µ and
we can compute the Hausdorff dimension to be log 2

log µ
. This is a perfect

world where we know everything.
Now, we instead consider the preimages instead of the forward im-

ages. It happens that our map is again a horseshoe, but placed verti-
cally instead of horizontally. In this case, we again get a product of a
Cantor set with an interval, and we obtain a set of Hausdorff dimension

log 2
− log λ

because the ratio coefficient was λ.

The set of points which can be iterated infinitely forward and back-
ward is the intersection of these two Cantor collection of vertical and
horizontal strips. This is the biggest invariant set of points in the
rectangle R.

Definition 10.4. This set

Λ =
⋂

−∞<n<∞

fn(R).

is known as the Smale horseshoe.

Smale discovered this in 1959 or 1960. He discovered two important
properties.

Firstly, every point in the set has a unique two-sided coding, so the
symbolic space is

Σ2 = {ω = (ij),−∞ < j <∞}.
This gives a commutative diagram

Σ2
σ //

h

��

Σ+
2

h

��
C

f // C

where the σ is the full shift. Given any random sequence, there is
a trajectory corresponding to this random sequence. This is a very
chaotic system.

Secondly, there are 2n periodic orbits of period n, and countably
many periodic orbits overall; this is again by our topological conjugacy.

Also, every trajectory is hyperbolic, and our separatrices are pre-
cisely the horizontal and vertical lines in our horseshoe. This is highly
chaotic.

We can choose two points x and y on a stable separatrix (vertical
line) so that they lie on the same horseshoe shaped curve. The points
on the stable separatrix move toward x, so the point y moves toward
x. This means that the horseshoe curve folds around and crosses the
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stable separatrix countably many times. Reversing time, we have the
symmetric situation with the horizontal line as stable. This deserves a
picture.

Now, take a hyperbolic point. If the unstable separatrix folds back
and intersects the stable separatrix again, their intersection is called a
homoclinic point. Repeating this procedure, we again get a count-
able number of intersections. All of these points of parts of the invariant
set of the horseshoe map. This is nontrivial, but it can be proven.

Remark. Homoclinic orbits were discovered by Poincare. He tried to
solve the three-body problem. He discovered a homoclinic orbit while
trying to solve this. This is one of his results that is now considered
part of the foundation of our theory. He wrote that he could not even
attempt to draw a picture – it is too complicated. This shows that
the behavior of the three-body problem is very complicated. Numeri-
cally computing the equations of the three-body problem, we can get
a graph. It starts with nice behavior, changes to chaotic behavior, and
returns to nice periodic behavior, and this happens repeatedly. This
is called persistent intermittency – intermittent chaotic behavior.
This puzzled scientists for some time. The source of such behavior is
a horseshoe. Since the horseshoe has zero measure, there is no chance
to pick a horseshoe point as the initial point. Therefore, the trajectory
cannot stay on the horseshoe, so it travels between horseshoes and hits
nice periodic behavior in between. We can’t see the horseshoes, but we
can see their behavior.

So we’ve seen three types of behavior: There is the Morse-Smale
system with finitely many chaotic points, so that we eventually get
nice periodic behavior. There is persistent intermittent chaos that
never dies out. The third case is permanent chaotic behavior. These
are the only these three types of chaotic behavior, and fractal sets are
in all of them. In these cases, the Lyapunov exponents and entropy
characterize fractal sets and instability. This forms the intersection of
fractal geometry and dynamical systems.
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11. Homework 1

These notes were generated at the problem session after the end of
the first half of the course. Much of the problem session was recorded
verbatim, and as such, may be less coherent than the previous lecture
notes.

Exercise 11.1. Consider the Hausdorff space (Σ+
r , da) with r ≥ 2.

Compute its Hausdorff dimension αr = dimH Σ+
r .

Solution.
Σ+
r = {1, 2, . . . , r}N

where the metric is

da(x, y) =
∑
j≥1

|xj − yj|
aj

where a > 1. We can ask what its Hausdorff dimension is. We have
two questions: Guessing the right number and proving it. To find this
dimension, we consider a one-parameter family of Hausdorff measures:
Assume

0 < m(Σ+
r , α) <∞.

We’re looking for the critical value, where this is finite. Recall that

m(Σ+
r , α) = lim

ε→0
inf
U

{∑
i

(diamUi)
α

}
We can turn the symbolic space into a Cantor set. Note that it is self
similar. If a set Y is a rescaling of X by a factor of λ > 0, then the

m(Y, α) = λαm(X,α).

This helps us compute the dimension. Here, our self similarity occurs
in the symbolic space:

Σ+
r = [1] ∪ [2] ∪ · · · ∪ [r],

where
[i] = {x ∈ Σ+

R : x1 = i}
are cylinders. Similar, we have

[a1a2 . . . ak] = {x ∈ Σ+
R : xi = ai∀i ≤ k}.

Now, consider the shift map σ : [i] → Σ+
r . This has the property that

d(σ(x1), σ(x2)) = λd(x1, x2). Therefore,

m(Σ+
r , α) =

r∑
i=1

m([i], α) =

(
1

a

)α
rm(Σ+

r , α).



FRACTAL GEOMETRY AND DYNAMICS 47

due to the rescaling.
If 0 < m(S+

r , α) <∞, then

1 =

(
1

a

)α
r =⇒ α =

log r

log a
.

The problem is that this is not a proof. We also don’t know that the
Hausdorff measure is nonzero.

Why this argument work? To show two things are equal, we check
two inequalities. First, we’ll show that

dimH Σ+
r ≤

log r

log a
.

To do this, we need to find a good cover. For every α > 0, we need

lim
ε→0

inf
∑
i

(diamUi)
α = 0

There is a nice ε-cover to use: We cover by cylinders by noting that

diam ([a1, . . . , ak]) =: dk

and ∑
i

(diamUi)
α = rkdαk = rk

(
1

a

)kα
d0

which can be made arbitrarily small, and m(Σ+
r , α) = 0. This doesn’t

give a bound in the other direction, however. There are a number of
ways to do this. We omit the technical details. The basic idea of a
direct argument for a lower bound is that we can assume our cover is
finite by compactness. We can then consider the smallest element in
the cover.

We will do this by the mass distribution principle:

Theorem 11.1 (Mass Distribution Principle). Suppose µ is a measure
such that µ(X) > 0 and there exists C > 0 and α > 0 such that
µ(B(x, r)) ≤ Crα.

For every x ∈ X, r > 0, we have dimH X ≥ α.

Proof. We want to show that m(X,α) > 0. This is by definition

m(X,α) = lim
ε→0

inf

{∑
i

rαi : {(xi, ri)}

}
≥ lim

ε→0
inf

{∑
i

1

C
µ(B(x, r))

}
.

This isn’t quite enough. We want to say that this is approximately
1
C
µ(X). The problem is that there are a lot of points that are covered

multiple times and are overcounted. So therefore m(X,α) ≥ 1
C
µ(X).

This gives a lower bound on Hausdorff dimension. This is a very useful
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tool – if you can find such measures. This is a good way of doing our
problem. �

We want to consider Bernoulli measures. To do this, we first need
the idea of Lebesgue measure. We omit the discussion of Lebesgue
measure.

We present a general procedure to construct a measure. We start by
defining X to be a set.

Definition 11.1. A collection of subsets S ⊂ 2X is a semi-algebra if

(1) ∅, X ∈ S
(2) A,B ∈ S =⇒ A ∩B ∈ S.
(3) A,B ∈ S =⇒ A \ B = ∩ki=1Ci for Ci ∈ S (where we take the

disjoint union).

Now, let l : S → [0,∞] be such that

(1) l(∅) = 0
(2) A,B ∈ S then A ⊂ B =⇒ l(A) ≤ l(B) (this follows from (3)).
(3) If Ai ∈ S are disjoint and A :=

⋃
iAi ∈ S then l(A) =

∑
i l(Ai).

This mimics the σ-additivity property.

Definition 11.2. We want to extend this to a function on a larger
σ-algebra. There are two ways of doing this. One is to gradually make
the collection of sets bigger. Suppose A is a semi-algebra satisfying a
modified version of property (3):

A,B ∈ A =⇒ A \B ∈ A.

Then A is an algebra. This property allows us to see that if A,B ∈ A
then Ac, Bc ∈ A. Then

A ∪B = ((A ∪B)c)c = (Ac ∪Bc)c ∈ A.

In addition, if A also satisfies Ai ∈ A then
⋃
iAi ∈ A then A is a

σ-algebra.

To construct a measure, we start with a semi-algebra, we make an
algebra, and then we produce a σ-algebra. One way to do this is to
throw a powerful theorem at it. This is called Caratheodory’s exten-
sion theorem. We omit the theorem; we are rushing through multiple
lectures in measure theory. Just trust that it works.

Alternatively, once we have a set function defined on a semi-algebra,
we can do a construction of an outer measure. Once we’ve done this,
we can then restrict to a collection of measurable sets, and we end up
at a σ-algebra of measurable sets.
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Definition 11.3. A set is measurable if m∗(E) = m∗(E ∩ A) =
m∗(E ∩ Ac).

That is very briefly how we construct measures. This is what we
want to use to build Bernoulli measures on symbolic space so that we
can use the mass distribution principle.

We’ve done a lot of abstract nonsense. Why is this relevant? Apply
the previous discussion in the case when x = Σ+

r and S is the set of
cylinders. This means

S = {[a1, . . . , ak] : a1, . . . , ak ∈ {1, . . . , r}}.

Recall the middle-thirds Cantor set construction is homeomorphic to
Σ+

2 . At the k-th level of the Cantor set construction, there are 2k

intervals that correspond to the 2k k-cylinders, so its natural to except
cylinders to behave like intervals.

Define a set function l : S → [0,∞]. We’ll want to find a measure
so that each cylinder at the same level have the same weight. So the
measure of any k-cylinder should be 2−k. We check that this satisfies
the additivity property. This gives us a measure called a Bernoulli
measure. This is nice because we know exactly the measure of balls
in symbolic space – they are just cylinders. (In general, for Bernoulli
measure, we can split up the measure of the cylinders (intervals) dif-
ferently.)

This means that m(B(x, ε)) = 2−k(ε) for some function k(ε). There-
fore, after some straightforward computations analogous to the gener-
alized nonsense discussed earlier, we conclude that

dimH Σ+
r ≥

log r

log a
,

and we’re done.
We’ve finished one out of nine exercises and used three-fourths the

time. We’ll discuss some other exercises in much less detail.

Exercise 11.2. Construct an uncountable subset of [0, 1] whose Haus-
dorff dimension is zero.

Solution. We do this using a Cantor-like construction. We let X1 the
middle third construction for the first step. We then break each interval
into two intervals scaled down by a quarter. We continue with scaling
of one-fifth, one-sixth, etc. Then let X =

⋂
nXn. This is uncountable

because it is homeomorphic to symbolic space by coding.
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If Cr
λ is the Cantor set we get from r intervals each scaling down by

a factor λ, then Moran’s theorem tells us that

dimH C
r
λ =

log r

− log λ
.

Note that this also answers problem 4.

Exercise 11.3. Compute the value of the Hausdorff function mh(C, α)
where C is the middle-third Cantor set and a = dimH C.

Solution. We know that

dimH Σ+
2 =

log 2

log 3
.

Fix a number β ∈ [0, 1], and let

Xβ =

{
x ∈ S+

2 : lim
n→∞

# of 1’s in x1, . . . xn
n

= β

}
.

We can use the same argument for m(X,α) = r( 1
a
)αm(X,α) for each

set, and we might see that they all have the same Hausdorff dimension.
This is false and more complicated. This is a caution that this technique
is dangerous.

Now, take the standard middle-third Cantor set and we have

m(C, α) = lim
ε→0

inf
∑
i

|Ui|α.

We can take covers by basic intervals and compute that m(C, α) ≤ 1.
We’re leaving a major portion of the solution to this problem as

an exercise. The other direction is harder, as we’ve said many times
before. Let U be an arbitrary ε-cover. If every Ui ∈ U is a basic
interval, we wave our hands and show that∑

|Ui|α ≥ 1.

The problem is that we may have covers that are not basic intervals.
Suppose Ui ∈ U is not a basic interval. To deal with such an interval,

we decompose it into three pieces. Let G be the largest gap in the
interval, and let the left and right pieces be L and R for some strange
reason. We want to relate |U |α to |L|α and |R|α.

By choice of G, note that |G| ≥ |L| and |G| ≥ |R|. Therefore,

|G| ≥ 1

2
(|L|+ |R|)
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This lets us see that

|U |α = (|L|+ |R|+ |G|)α ≥
(

3

2
|L|+ 3

2
|R|
)α
≥ 1

2
(3|L|α) +

1

2
(3|R|)α

=
3α

2
(|L|α + |R|α) = |L|α + |R|α.

We want to make G disappear; it doesn’t stand for “good”; it stands
for “gap”. We needed to use a convexity argument:(

1

2
(x+ y)

)α
≥ 1

2
(xα + yα).

So we can break intervals into basic intervals, and hence m(C, α) = 1.

Exercise 11.4. Given a number α ∈ [0, 1], construct a subset Z ⊂
[0, 1] whose Hausdorff dimension is α.

Solution. Use the standard Moran construction to get any Hausdorff
dimension α ∈ [0, 1]. In fact, we can get α ∈ [0,∞] by doing this in
Rn.

Remark. How do we get something with Hausdorff dimension ∞?
Consider the Hilbert cube

[0, 1]× [0,
1

2
]× [0,

1

3
]× · · ·

It has Hausdorff dimension ∞ because of the monotonicity property.

Exercise 11.5. Show that the lower and upper box dimensions of the
set

A =

{
0, 1,

1

2
,
1

3
, · · ·

}
are equal to 1

2
.

Solution. Clearly, the box dimension is in [0, 1]. Given ε > 0, let N(ε)
be the minimum cardinality of an ε-cover of A. Recall the definitions of
the box dimensions. To find them, we need to estimate N(ε). There’s
a part where A is pretty sparse and a part where A is pretty dense;
they are separated by 1

k(ε)
. We have a region where each ball covers

one point, and we have a region where we want to cover all of [0, k(ε)].
We can compute k = k(ε) is such that

1

k
− 1

k + 1
< ε ≤ 1

k − 1
− 1

k

so that
1

k(k + 1)
< ε ≤ 1

k(k − 1)
.
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Then we need k(ε) balls to cover the sparse region, and we need 1
εk(ε)

to cover the dense region.

k(ε) ≤ N(ε) ≤ k(ε) +
1

εk(ε)
.

Observe that ε ≈ 1
k2 so that 1

εk
≈ k. Therefore,

k ≤ N(ε) < 2k.

The box dimensions now follow from the definition.

Exercise 11.6. Compute the lower and upper box dimensions of the
set

A =

{
0, 1,

1

4
,
1

9
,

1

16
, · · ·

}
.

Solution. Same approach as problem 5.

Exercise 11.7. Compute the Hausdorff dimension and lower and up-
per box dimensions of the subset E ⊂ [0, 1] whose decimal expansions
do not contain the digit 5.

Exercise 11.8. Compute the Hausdorff dimension of the “Cantor tar-
tan”, i.e. the set

E = {(x, y) ∈ R2 : either x ∈ C or y ∈ C},
where C is the middle third Cantor set.

Exercise 11.9. Compute the Hausdorff dimension of the plane set
given by

E = {(x, y) ∈ R2 : x ∈ C and 0 ≤ y ≤ x2},
where C is the middle third Cantor set.
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12. Homework 2

These notes are from the second problem session at the end of the
course.

Exercise 12.1. Estimate from below the Hausdorff dimension of the
Markov geometric construction, which starts from three disjoint inter-
vals I1, I2, I3 ⊂ [0, 1]. The ratio coefficients of the construction are
λ1 = λ2 = λ3 = λ with 0 < λ < 1

3
and the transition matrix is

A =

1 1 0
1 0 0
0 0 1

 .

Solution. We draw the directed graph for the transition matrix. Note
that from the third interval it is only possible to go to the third interval,
and from the second interval it is only possible to go to the first interval.
From the first interval, there are two choices. Therefore, there are two
subintervals I11, I12 for I1, and only subintervals I21 for I2 and I33 for
I3.

Let Xn be the set of all intervals of the n-th level. We get a Cantor
set

X =
⋂
n

Xn.

We are interested in estimating dimH X. As we saw in the previous
problem set, we need to use either Bernoulli measures or Markov mea-
sures.

For a Markov measure, we need a probability vector ~π and a sto-
chastic matrix P . The Markov measure of a cylinder is then

µ([x1, . . . , xn]) = πx1Px1x2 · · ·Pxn−1xn .

It is important to check the properties of measures, but this is a simple
verification. We will use this measure for our calculation.

It is natural to split the problem into two parts as a disjoint union;
we either have strings of 1s and 2s or a string with only 3s. This second
case doesn’t change the dimension, so we’ve reduced the problem to one
about the matrix

Ã =

(
1 1
1 0

)
.

We also need to have that µ(x) > 0. It is known that if there is a
zero transition probability but the corresponding entry in the stochastic
matrix is nonzero, then µ(x) = 0. Here, we assume that the matrix A
is irreducible – for every i, j there exists n such that (An)ij 6= 0; you
can get to any vertex from any other vertex).
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There’s a more general statement that we need. It’s best thought of
as a generalization of the law of large numbers.

Proposition 12.1. For µ-a.e. x ∈ Σ+
d , we have

lim
n→∞

1

n
(# of times that i is followed by j in x1, . . . , xn) = πiPij.

Note that this is the only reasonable thing the limit can be; πi is the
probability that we start with i and Pij is the probability of going from
i to j. This can be proved using the Birkhoff Ergodic Theorem, which
we didn’t discuss.

In our case, we have ~π = (p, 1− p) and the stochastic matrix is

P =

(
1− a a

1 0

)
.

We need to have ~πP = ~π, so that

(p, 1− p)
(

1− a a
1 0

)
= (p− ap+ 1− p, ap) = (p, 1− p),

so that

p =
1

1 + a
.

This gives a one-parameter family µa of Markov measures. The support
of the measure is X; µa(X) = 1. This means that if we know something
of the local dimension of the Markov measure, then we know a lot. We
need to know the measure of a cylinder: What is µa([x1, · · · , xn])?
More precisely, we want to know

h(µa) = lim
n→∞

− 1

n
log µa([x1, · · · , xn])

for µ-a.e. x. This would give that µa([x1, · · · , xn]) ≈ e−nh(µa).
For any Markov measure,

µ([x1, . . . , xn]) = πx1Px1x2 · · ·Pxn−1xn .

Then

log µ([x1, . . . , xn]) = log πx1 +
n−1∑
k=1

Pxkxk+1

= log πxi +
∑
i,j

(log pij)(# of times i is followed by j in x1, . . . , xn).

Now, for a.e. x, we have that

− 1

n
log µ([x1, . . . , xn])→

∑
πiPij logPij.
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This is the entropy of the general Markov measure.
For µa in our problem, we get

h(µa) = − [p ((1− a) log(1− a) + a log a) + (1− p) (1 log 1 + 0 log 0)]

=
−((1− a) log(1− a) + a log a)

1 + a
.

where we use the convention 0 log 0 = 0.
We keep talking about entropy, but we want to estimate the dimen-

sion. We do this by using the very general relationship

dimension =
entropy

Lyapunov exponent
,

so the local dimension of µa is

h(µa)

− log λ
.

We need to maximize this function to get the best lower bound. This
is an exercise in first-year calculus:

d

da
hµa = 0 =⇒ a =

3−
√

5

2
.

For this value of a, we have

P =

(√
5−1
2

3−
√

5
2

1 0

)
.

After a further calculation that we again omit, we have

h(µa) = log

(
1 +
√

5

2

)
.

We now have the definite statement that this is indeed a lower bound
for the Markov construction;

dimH X ≥
log
(

1+
√

5
2

)
− log λ

.

We conjecture that equality holds. Why is this true?
We’ve seen the Mass Distribution Principle 11.1. There is a similar

statement for the upper bound:

Proposition 12.2. If there exists a constant C such that µ(B(x, r)) ≥
C ′rβ for every x ∈ Z, µ(Z) > 0, then dimH Z ≤ β.
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The proof requires covering lemmas and is harder than the proof of
11.1 despite it being a statement about the upper bound; requiring
everywhere instead of almost everywhere makes this harder to use.

For example, if we have a Bernoulli measure, then

µ([x1, . . . , xn]) = p#1sq#2s.

This works everywhere only where p = q = 1
2
, which is exactly where

our lower bound was maximized; this is not a coincidence. So to show
the upper bound, we just need to say that our limit exists everywhere
and not just almost everywhere.

We’ll do our best to present this construction without pulling too
many rabbits out of a hat. Here’s the general procedure for the con-
struction of a Parry measure.

We want C,C ′ such that for a Markov measure µ = (π, P ),

C ′e−nh(µ) ≤ µ([x1, · · · , xn]) ≤ Ce−nh(µ).

We want the measure µ([x1, · · · , xn]) = πx1Px1x2 · · ·Pxn−1xn to not de-
pend on the xi. We can do this using a telescoping product.

The idea is to let

Pij =
aijvj
χvi

for some vector ~v ∈ Rd, for some χ that will soon be determined; the aij
serves to set this to zero when the transition matrix has a zero entry.
This is all happening in the context of one transition matrix; through
all of this, a transition matrix A is fixed – we want to find dimH Σ+

A.
There are two things that we need to check. Firstly, the rows of P

must sum to 1. Indeed,

1 =
∑
j

Pij =
∑
j

aij
χ

vj
vi
.

Therefore,

χvi =
∑
j

aijvj =⇒ χ~v = A~v.

This is an eigenvector equation, so ~v is a right eigenvector of A and χ
is the corresponding eigenvalue.

We also need a probability vector ~π such that it is a left eigenvector
of the stochastic matrix: ~πP = ~π. This means that

πj =
∑
i

πiPij =
∑
i

πi
aijvj
χvi

,
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which yields another eigenvalue equation

χ

(
πi
vj

)
=
∑
i

(
πi
vi

)
aij.

Define ~u by ui =
πj
vj

. Then χ~u = ~uA, so ~u is a left eigenvector of A.

All of this is entirely heuristic and somewhat roundabout; this won’t
be found in any textbook.

So now we’re almost done. For a transition matrix A with ~u and ~v
as left and right eigenvectors for the largest eigenvalue χ, define ~π be
πi = uivi (normalized) and Pij =

aijvj
χvi

. This defines a Markov measure.

Now, we have our telescoping product

πx1Px1x2 · · ·Pxn−1xn = χ−n(ux1vxnχ),

which gives us the inequality that we claimed:

C ′e−nh(µ) ≤ µ([x1, · · · , xn]) ≤ Ce−nh(µ).

Note that here we needed an eigenvector with all real and positive
entries. This is true for irreducible transition matrices by the Perron-
Frobenius Theorem; this is also why we need the largest eigenvalue.
There is a nice geometric proof of this theorem.

That was an incredibly roundabout but fully complete answer to
this problem. So we can now do this problem in thirty seconds by
computing eigenvalues.

Exercise 12.2. Describe the behavior of all trajectories of the map
f : R→ R given by

f(x, y) =

(
x2 + c,

1

2
y

)
for c ≥ 0.

Solution. Note that this is really two one-dimensional maps that have
met each other but not really mingled. One of them isn’t even an
interesting map. We only care about the x-coordinate with g(x) =
x2 + c. This map is very interesting, but for this parameter range,
there isn’t much going on.

We want to know about fixed points, periodic points, stability of
each, and how trajectories behave. We quickly see that for large values
of c, all trajectories go to∞ (draw a picture). For some value of c, x2+c
intersects the line y = x, which is a fixed point. Anything starting to
the left of the point horizontally across from it also goes to infinity,
and in between we have a closed interval where trajectories converge
to the fixed point. For c < 1

4
, there are two fixed points, one of which
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is stable. For c > 1
4
, there are no fixed points and all trajectories go to

infinity.

Exercise 12.3. Find all periodic points of period 2 of the map

f(x, y) = (x2 − (3/8)y2, 2x)

and determine the type of stability (stable, unstable, or saddle).

Solution. This is a genuinely two-dimensional map. The brute force
way is to compute the second iterate and get a polynomial of degree 4
and solve. We’ll be more intelligent. We actually already know some
roots of the equation

f(f(x, y)) = (x, y);

all fixed points satisfy it, for example. A little computation solving
f(x, y) = (x, y) shows that (0, 0) and (−2,−4) are the fixed points.
This makes it easier to factor and solve the quartic polynomial for the
period 2 orbits.

We now have that the period orbit contains the points(
2

5
,−8

5

)
,

(
−4

5
,
4

5

)
We are interested in stability, so we compute the Jacobian and find
eigenvalues. The Jacobian is

Df =

(
2x −3

4
x

2 0

)
.

In particular, evaluating at the period 2 orbit and multiplying together,
we have (

4
5

6
5

2 0

)(
−8

5
−3

5
2 0

)
.

The product is an exercise in linear algebra, and the eigenvalues of the
product give the stability of the orbit. The same can be done at each
of the fixed points.

Exercise 12.4. Describe the type of bifurcation at the given value of
the parameter for the following maps:

(1) fλ(x) = x+ x2 + λ for λ = 0;
(2) fλ(x) = λ sinx for λ = −1 or λ = 1;

Solution. For the first equation:
The easiest way is to look at the graphs. For λ = 0, this is the

same picture as what we saw in problem 2. This is called a tangent
bifurcation or a saddle-node bifurcation.
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For the second equation: We look at this in a neighborhood of zero
since otherwise x and λ sinx are far apart and therefore uninteresting.
We plot the graph to see the behavior.

The fixed point whose behavior is changing is the one at 0. For
λ < 1, 0 is a stable fixed point; for λ = 1, 0 is neutral, and for λ > 1,
0 is unstable and we have two more stable fixed points. This process
is called a pitchfork bifurcation. This is because the bifurcation
diagram looks like a pitchfork. (draw a picture!)

Near λ = −1, we again draw a picture. Again, the stability of the
fixed point 0 changes but in a different way. For λ > −1, 0 is stable; for
λ = −1, 0 is neutral; for λ < −1, 0 is unstable – but there are no new
fixed points. Instead, we get a periodic orbit. Looking at the second
iterate, we see a period-doubling bifurcation. By plotting the graph
of f 2(x) = λ sin(λ sin(x)), we see a fixed point which corresponds to a
period 2 orbit. This is an important phenonomenon, and it deserves a
picture.

The period-doubling and tangent bifurcations are generic while the
pitchfork bifurcation is not; it is “codimension two”. Small changes to
the pitchfork bifurcation lead to bifurcations of the other two types.

Exercise 12.5. Consider the map f given by

f(x) =

{
3x if 0 ≤ x ≤ 1

2

3− 3x if 1
2
< x ≤ 1.

Show that

(1) 3
13

and 3
28

lie on 3-cycles for f ;
(2) the set

C = {x ∈ [0, 1] : fn(x) ∈ [0, 1] for all n}

is the middle-third Cantor set.

Solution. Plotting this, we see that this is a piecewise linear map. By
plotting the graph of f 2, we see that this looks like the Cantor con-
struction from the piecewise linear two-branched map considered ear-
lier in the lectures. This is a very geometric argument that is fairly
straightforward. One difference is that the conjugacy map with sym-
bolic space turns out differently; instead of lexicographic ordering, we
need a messier ordering.

Exercise 12.6. Consider the map f of the plane given by

f(x, y) = (x2 + y3 − 2a2, x+ y).
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Find all fixed points of the map and determine the type of their stability
depending on the value of the parameter a; sketch the phase portrait
of the system.

Exercise 12.7. Show that the Smale horseshoe contains a point whose
orbit is everywhere dense in the horseshoe.

Solution. This is invertible, so we code it by two-sided sequences Σ2 =
{0, 1}Z. Then

Λ = {x : fn(x) defined for all n ∈ Z}.
We can code this in terms of all two-sided sequences. Finding an orbit
here is like finding a dense orbit in the two-sided shift space. This
means that we need {σny} to enter every open cylinder in the shift
space. Each cylidner looks like

[x−n · · ·x−1x0x1 · · ·xn].

To do this, list all words of length 1, and then all words of length
2, and continue forever. This defines a particular sequence such that
every finite word occurs in it. That’s what we need to have, since each
of these finite words would appear after a certain shift. We’re therefore
done.
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