
CS 154 NOTES

MOOR XU
NOTES FROM A COURSE BY LUCA TREVISAN AND RYAN WILLIAMS

Abstract. These notes were taken during CS 154 (Automata and Complexity Theory)
taught by Luca Trevisan and Ryan Williams in Winter 2012 at Stanford University. They
were live-TEXed during lectures in vim and compiled using latexmk. Each lecture gets
its own section. The notes are not edited afterward, so there may be typos; please email
corrections to moorxu@stanford.edu.

1. 1/10

The website for the class is theory.stanford.edu/~trevisan/cs154

In the engineering fields, computer science is the field with the most developed idea of
what is impossible. There is a mathematical theory for this. In the 1930s, there were
some interesting foundational problems in mathematical logic, and impossibility results were
obtained. There became a pretty good model for what we now consider a computer. These
all came before there was the technology to build them. This is sort of like civil engineering,
like the Babylonians. The mathematical theory was ready before the technology was, so the
theory was well-developed, and we also knew about what wasn’t possible.

Impossibility results and lower bounds are useful in computer science in three ways.

(1) It allows us to know what sort of problems to try. We want to solve tractable prob-
lems, and impossible problems can be solved using heuristics and approximations.

(2) Your result might be overly general: a special case might be hard, but there might be
approachable examples. What is the actual problem you want to solve in practice?
Even that is not always completely clear. For example, there is most than one way
to formulate the clustering problem.

(3) You need to have the right definitions, for example in security. We need to model
what is an elementary operation, and what types of problems are feasible to solve in
a certain amount of time. This tells us whether security systems can be broken.

This is a big challenge. If you study algorithms, you can always do an experimental study.
But if you want to prove a result about factoring an n-digit integer, there are infinitely
many possible algorithm, and you cannot just experiment. Or you might want to reason
about a security algorithm. We can only do this by proving mathematical statements about
algorithms. So first we need a mathematical formalization of what is an algorithm. We have
three approaches for this.

1. Automata and regular expressions. These are mathematical models of algorithms that
run in linear time, make one pass through the input, and use a constant number of bits
of memory. The disadvantage of this model is that it is very restrictive. However, we
can understand it completely. Since we know that they are linear time, the measure of

1

theory.stanford.edu/~trevisan/cs154

complexity is memory usage. First, we want to know if a problem can be solved by this
type of method, and then we want to know how much memory is necessary and sufficient.

2. Computability. This was where computer science was born in the 1930s. Here, we allow
any algorithm, with any running time, as long as it returns an answer. There are well-
defined problems for which no algorithm can exist, regardless of running time. One such
problem is the halting problem.

Example 1.1 (Halting problem). Given a problem P and an input x, does P terminate
with input x.

There is no general method to solve this problem. The proof is simple, by contradiction.
Suppose that such a program exists, and use it to determine whether itself terminates when
given itself as input.

After some work on this, we’ll be able to look at the following:
a. Undecidability.
b. In every formalization of mathematics, there are true statements that do not have

proofs. In the early 1900s, mathematicians wanted to find a system where any true
statement can be proved; this was shown to be impossible in the early 1930s. This can
be done simply from undecidability. The basic idea is that this would give us a method
to solve the halting problem, by considering statements of the form “this program with
this input terminates”. But we can’t solve the halting problem.

c. Kolmogorov complexity. This gives a measure of how random a string is, and puts
limits on its compressibility. We will be able to find a probability distribution on
mathematical statements, and we can produce statements that are true with high
probability without actually having proofs.

This approach to analyzing algorithms seems excessively general, while the previous ap-
proach was excessively restrictive. This leads to the last part of the course.

3. Computational complexity theory. This studies the existence of “efficient” algorithms for
problems.

Definition 1.2. An algorithm is efficient if it takes time at most a polynomial function
of the input length.

Remark. Observe that n100 would be infeasible for most inputs, while (1.001)n would be
tractable for even moderately large inputs. But normal algorithms that we use do not
have running times like these.

In the theory of automata, we will be able to prove everything. In computability, we
can prove a lot. In computational complexity theory, which is closest to reality, there are
a lot of open problems.

We’ll see a result known as the time hierarchy theorem.

Theorem 1.3 (Time hierarchy theorem). There are problems solvable in time O(n3) but
not in time O(n2). Or there are problems solvable in time O(2n) but not O(2n/2). There
is a general result.

Unfortunately, these problems are all very artificial, but we don’t actually have strict
bounds for real problems.

Then we will look at NP-completeness. For many problems, such as the scheduling
problem, we can solve them in finite time through a brute-force search. But this is usually

2

intractable. We want to know if there is a linear or quadratic time algorithm. We would
like to prove rigorously that no efficient algorithm exists, but instead, we have results that
reduce problems to other problems. Once we have a network of problem reductions, if we
can find an efficient algorithm or prove a lower bound for one problem, that result would
also apply to these other problems. We don’t know what the answer is for any problem,
but we know that the answer is the same for this large class of problems.

In this theory, P stands for all problems solvable in polynomial time, and NP stands
for all problems involving searching for a solution with a given property.

Both P = NP and P 6= NP lead to many consequences. First, suppose that P = NP.
Then there is an algorithm that given an integer n and a property of n-bit strings checkable
in time t(n), finds a string with the property in time (t(n))O(1) or determines that none
exists. But then given a mathematical problem, such as the Riemann hypothesis, we
could probably search for proofs of length up to a million pages. Or we could solve any
optimization problem. If we can name a property, then we could make such a property
appear in about the same time. But from real life, we know that it is easier to laugh at
jokes than to create them, and it is easier to check if homework is correct than to do the
homework.

We will also look at the idea of severely memory bounded algorithms. Given an n-bit
input, we wish to use O(log n) bits of memory. Effectively, these use no data structures.
For example, is a graph strongly connected, or are two vertices of a graph connected?
This gives an analog for the theory of NP-completeness.

There is also an application to cryptography, and the idea of zero knowledge proofs.

We will begin by recalling the definition of automata, which is something that takes its
input from a string and has finitely many bits of memory.

First, let’s do this graphically.

Example 1.4.

start // GFED@ABCA

1

LL

0 // GFED@ABCB
0 //

1

hh
GFED@ABCC

0 //

1

__

GFED@ABC?>=<89:;D

1

LL
0
nn

We denote end states where answers are returned by a double circle. This machine checks
if there are three zeros in a row. This has states Q = {A,B,C,D}, and possible inputs
Σ = {0, 1}. The starting state is q0 = A. The final state is D, where the machine outputs
yes. It also has operations δ(A, 0) = B, δ(A, 1) = A, δ(B, 0) = C,

In order to define a machine, we need to describe

• the set of possible states Q
• the set of possible inputs Σ, or the alphabet
• one-step operation δ : Q× Σ→ Q
• the starting state q0

• the set of states F that output yes.

Definition 1.5. If M is an automaton we define L(M) to be the language of M :

L(M) = {x : x is a string of symbols of Σ such that M outputs YES on input x}.
In general, a language is a set of strings.

3

In our example above, we would have L(M) = {000, 0000, 0001, . . . }.
Definition 1.6. A language is regular if it is the language of some automaton.

We just showed that the language of all strings with three zeros in a row is regular. As
we will see soon, not all languages are regular.

2. 1/12

Today’s lecture will be about automata and regular expressions. Last time, we gave
the definition of a deterministic finite automaton (DFA). Recall that defining a automaton
requires defining the states Q, alphabet Σ, operations δ : Q× Σ→ Q, initial states q0 ∈ Q,
and final states F ⊆ Q corresponding to yes answers.

Automata are descriptions of linear time, constant memory algorithms. In contrast, reg-
ular expressions describe what a set of strings is like, but does not describe the algorithm.
There is an equivalence between automata and regular expressions. The transition between
specifications and algorithms is explicitly doable.

Example 2.1. This is an example of a regular expression.

(0 + 1)∗000(0 + 1)∗

Here, the alphabet is Σ = {0, 1}.
Definition 2.2. The regular expression 0 corresponds to the language {0}, and the regular
expression 1 corresponds to the language {1}.
Definition 2.3. If E1 and E2 corresponds to the language L1 and L2 respectively, then
E1 + E2 corresponds to the language L1 ∪ L2.

Definition 2.4. If E corresponds to language L, then E∗ corresponds to language L∗ = {x :
x = x1 · · ·xk, xi ∈ L, k ≥ 0}.
Definition 2.5. E1 · E2 corresponds to language L1 · L2 = {x : y · z, y ∈ L1, z ∈ L2}.
Example 2.6. Here are some examples.

regular expression language it represents
ε {ε}
0 {0}
1 {1}

0 + 1 {0, 1}
(0 + 1)∗ {ε, 0, 1, 00, 01, . . . }

00 {00}
000 {000}

(0 + 1)∗000(0 + 1)∗ {x000y : x and y are arbitrary binary strings}.
We will discuss non-deterministic finite automata (NFA) as well. It seems that NFAs are

more powerful than DFAs, but it turns out that for any NFA we can find an equivalent DFA,
so they are equivalent notions. But it is much easier to produce an NFA that recognizes a
regular expression. Going from NFAs to regular expressions will require that we consider
the notion of a GNFA.

DFA
,,
NFAll

00
regular expressionsll

4

Definition 2.7. A non-deterministic finite automaton requires defining

• a set of states Q
• an alphabet Σ
• state transitions δ : Q× Σ→ 2Q

• an initial state q0 ∈ Q
• final states F ⊆ Q corresponding to yes answer.

What’s different about NFAs are the state transitions: δ returns a subset of Q.

Example 2.8. Suppose L is the language of binary strings that end in 000. The only way
to do this with a DFA is to keep a queue that has the last three bits that have been seen.
It is impossible to do this using a DFA with fewer than eight states. But there is a much
simpler NFA for this problem.

start // GFED@ABCA

0,1

LL

0 // GFED@ABCB
0 // GFED@ABCC

0 // GFED@ABC?>=<89:;D

Notice that there is some ambiguity at the first node for how to apply the state transition
functions. In fact, the machine effectively chooses one of the possibilities at random.

For example, given the input 01000, what does the machine do? It starts in state A, and
goes to either states A or B. At the next step, however, there is no transition from B, so
that calculation will die, and the machine will be at A. At the next step, the machine might
be in A or B, and after the next step, the machine might be in A or B or C. By the end,
the machine could be in four states: A, B, C, or D. This diagram represents the possible
state transitions.

0 1 0 0 0

A

��@
@@

@@
@@
// A // A

��@
@@

@@
@@
// A

 @
@@

@@
@@
// A

 @
@@

@@
@@
// A

B B

 @
@@

@@
@@

B

 @
@@

@@
@@

B

C

 @
@@

@@
@@

C

D

In this example, δ(B, 1) = ∅.
Definition 2.9. An NFA accepts an input if among the possible states it can reach at the
end of the computation, there is a state in F . It rejects an input if all reachable states are
not in F .

The point is that there are no false positives. One way to think about this is that every
time the machine forks the calculation, it makes a copy of itself.

Another feature of NFAs is that some times we see a transition labeled by ε, such as

GFED@ABCA
ε // GFED@ABCB
5

This means that the NFA can move from state A to state B without reading anything from
the input. We will show how this is helpful by showing how to convert regular expressions
to NFAs.

Theorem 2.10. Given a regular expression E, we can construct an NFA M such that L(M)
is the same as the language described by E.

Proof. We will describe an algorithm to do this.
Suppose that we know that the language for E is given by some NFA M . Now, we want

to modify M to an NFA that recognizes E∗. This is given as follows. The start state should
be accepting, since the empty string is ok. Now, for every state that was accepting in M ,
add ε-transitions going back to the start state. Then we would be accepting any sequence
of any number of strings in E.

To see how things might go wrong, consider

start //76540123 1
))

0

FF
76540123'&%$!"#

1

ii 0ff

This is an automaton that accepts strings with an odd number of 1s. The star of this would
accept the empty string and strings with at least one 1. Applying the description above, we
get the automaton

start //76540123'&%$!"# 1
))

0

FF
76540123'&%$!"#

1

ii 0ff

ε

		

but this accepts 0, so something went wrong. The fact that we made the initial state
accepting changed the automaton too much.

The way to fix this is to create a new state that wasn’t there before, and making that an
accepting initial state. From there, we use an ε-transition to go to what was the initial state.
The empty string is still accepting, and we’ve only added the empty string to the language,
and we are not introducing any spurious accepting conditions. In the example above, the
correct NFA would be:

start //76540123'&%$!"# ε //76540123 1
))

0

FF
76540123'&%$!"#

1

ii 0ff

ε

		

This shows that if we already have an automaton for some expression, we can also build the
automaton for the star of that expression.

6

Next, we discuss unions. If we have machines M1 and M2 equivalent to expressions E1

and E2 respectively, we want a machine equivalent to the union E1 + E2. To do this, use

M1

start //76540123
ε
>>}}}}}}}}

ε A
AA

AA
AA

A

M2

Now, to make E1 · E2, for each accepting state of M1, send an ε-transition to the start
state of M2. Then make the only accepting states those of M2.

Finally, in the base cases, we have ε corresponding to //76540123'&%$!"# , and 0 corresponding to

//76540123 0 //76540123'&%$!"# , and 1 corresponding to //76540123 1 //76540123'&%$!"# . There’s also ∅ corresponding to
//76540123, where everything dies.

Note that ∅+ 1 = 1 and ∅ · 1 = ∅. Also, ε · 1 = 1. �

We’ve shown that from an regular expression, we can get an equivalent NFA. To get that
regular expressions are equivalent to DFAs, we need to show that for any NFA there is an
equivalent DFA.

Recall the NFA and the tree of transitions in Example 2.8. In this example, we see that
the tree becomes rather large. If we want to simulate anything by keeping track of the tree,
then after n states and using a machine with k states, we end up with kn possibilities, which
is much too large to efficiently do. In fact, we don’t need to keep track of the entire tree. It
suffices to know what states are reachable at any step. Now, this is a linear time simulation
that makes one pass through the input and only requires a constant amount of memory,
which means that this can be simulated by a DFA. Here, we need to store subsets of possible
states of the machine.

This yields a DFA whose nodes are subsets of the nodes of the NFA. Then for each state
and for each bit, we will look at what are the possible sets that can be reached (ignoring all
nodes that cannot actually be reached). For example, for the NFA in Example 2.8, we have

GFED@ABCA1
22

0

'' WVUTPQRSA,B

0
��

1
oo

_^]\XYZ[A,B,C

0
��

1

hhPPPPPPPPPPPPPPPPPP

wvutpqrsonmlhijkA,B,C,D

1

__@@@@@@@@@@@@@@@@@@@@@@@

This completely shows the equivalence between DFA and NFA. It remains to go from NFAs
to regular expressions, which we will do next time through considering GNFAs.

7

Definition 2.11. A GNFA is an NFA with transitions labeled by regular expressions.

Clearly, every NFA is a generalized NFA.

3. 1/17

Today we will finish the proof of equivalence of DFAs, NFAs, and regular expressions.
We then turn to the type of question we are most interested in this class: What are the
limitations of this approach, and can we obtain some impossibility results? We will have two
results of this sort: the Pumping Lemma and the Myhill-Narode Theorem. Next time, we
will discuss the state limitation of DFAs.

We start with the equivalence between DFAs, NFAs, and regular expressions. Recall from
last time that it remains to construct regular expressions from NFAs. We will do this through
considering GNFAs, which are like NFAs but with transitions labeled by regular expressions.

Example 3.1.

start //76540123 0∗ //

1
��

76540123

76540123 0∗1

??���������

Clearly, any NFA is also a GNFA. The proof of the equivalence requires showing that each
GNFA is equivalent to an NFA.

Definition 3.2. A GNFA has transitions labeled by regular expressions, with two restric-
tions:

• start state has no incoming transitions
• only one state in F , no outgoing transitions

Now, if a GNFA has only two states, then it must have a start state and a final state, and
there are only be one transition. The GNFA then looks like

start //76540123reg exp
//76540123'&%$!"#

The point here is that a GNFA with two states is a regular expression.

Lemma 3.3. For every k-state GNFA with k ≥ 3, there is an equivalent GNFA with k − 1
states.

Applying this lemma repeatedly, we can reduce any GNFA to a GNFA with two states,
which is just a regular expression.

Proof. Pick one state other than the start state and the accept state. Remove it, and fix
the rest of the automaton so the language it accepts does not change. Here is how to fix the
automaton.

GFED@ABCA
E4 //

E1

��

GFED@ABCB))5u 4t 3s 2r 2r 1q 0p /o .n -m ,l ,l +k *j)i

GFED@ABCR

E3

??~~~~~~~~~

E2

LL

GFED@ABCA
E1E∗2E3+E4

// GFED@ABCB

8

�

Example 3.4. Consider binary strings with an even number of ones. This is a two state
machine:

start //76540123'&%$!"# 1
))

0

FF
76540123

1

ii 0ff

The regular expression is 0∗(0∗10∗10∗)∗. We can get this by thinking about it, but what is
the mechanical way of doing this?

First, we add a new start state and a new final state.

start //76540123 ε //76540123 1
))

0

FF

ε

��76540123
1

ii 0ff
76540123'&%$!"#

Now we start to remove a state:

start //76540123 ε //76540123
0+10∗1

FF

ε

��76540123'&%$!"#

Finally, removing one more state gives

start //76540123 (0+10∗1)∗
//76540123'&%$!"#

This gives us a nice regular expression for this automaton.

Now, we will proceed to impossibility results.

Example 3.5. Consider the language Maj of binary strings with strictly more ones than
zeros. Here, 0, 1 /∈ Maj and 1, 011, 10111, 10011 ∈ Maj.

We want to show that this language is not regular, and as with many impossibility results,
we will use contradiction.

Suppose Maj was regular, and let M be a DFA for Maj. Call k the number of states of
this machine. Consider the states that M reaches after reading ε, 0, 00, 000, 0000, . . . , up
to strings of k zeros. Equivalently, feed the string of k zeros to the machine, and see what
states it walks through. In either case, we used k + 1 strings in a machine with k states, so
there must be a state with two strings. This means that there are lengths i and j, such that
strings of zeros of length i and j both reach state q.

We can now think of the automaton as having forgotten the difference between i and j
zeros; the two situations are indistinguishable. Now, what would the machine do given the
inputs 0 . . . 01 . . . 1 with i zeros and j ones, or j zeros and j ones? The first string is in
the language, while the second string is not. However, our hypothetical machine would do
precisely the same thing given these inputs; after the zeros, it would be in state q, and then
it would process ones without having any memory of what it did before.

9

This means that either the machine will accept both inputs or reject both inputs; in both
cases, it is incorrect. Therefore, the machine can’t exist at all, and this language is not
regular.

Example 3.6. As a related example, suppose we are interested in a language with more
occurrences of 01 than 10. This seems like the same type of problem, needing to use a
counter. But this problem can be solved by a regular expression.

Lemma 3.7 (Pumping Lemma). For any regular language L, there is a P (pumping length)
such that for every string s ∈ L with length |s| ≥ P , we can write s = x · y · z so that

• |y| > 0
• x · yi · z ∈ L for all i ≥ 0
• |x · y| ≤ P

Proof. Suppose that L is regular, and M is a DFA for L. Let P be the number of states of
M . Now, take any string s ∈ L with |s| ≥ P . Say s = s1s2 . . . sn, with n ≥ P .

Consider the computation of the automaton M on input s1 . . . sn. Before the computa-
tion begins, the automaton is in state q0. After reading each bit, say the automaton is in
states q0, q1, q2, . . . , with qt = δ(qt−1, st). Now, look at the states in the first p steps of the
computation. The machine goes through p + 1 states, so the states q0, . . . , qp cannot be all
different. So there must be two distinct time steps 0 ≤ i < j ≤ p such that qi = qj.

Now, let x = s1s2 . . . si, y = si+1 . . . sj, z = sj+1 . . . sn. First, observe that xz ∈ L. To see
why this is try, consider running the machine on xz as input. This is because after reading x,
the machine is in state qi = qj, and reading z takes the machine to qn, which is an accepting
state. Similarly, xyyz ∈ L because reading the string y while in state qi = qj leaves the
machine in state qi = qj. The point is that the machine forgets how many times it sees the
pattern y, so we can include it as many times as we like. In addition, since i < j, we have
y 6= ε and |xy| = j ≤ P . �

This lemma gives a property of regular languages, but we will always use it to show that
languages are not regular. The outline is to suppose that a language is regular, and to show
that there cannot be a pumping length.

Example 3.8. Recall example 3.5. Here is how we prove that Maj is not a regular language,
using the Pumping Lemma 3.7.

Suppose that Maj is regular, and let P be the pumping length of Maj. Consider s =
0 · · · 01 · · · 1 ∈ Maj with P zeros and P + 1 ones. So we break this up as s = xyz where
y = 0 · · · 0 for some number i of zeros. But then xyyz contains p + i zeros and p + 1 ones,
which is not in Maj, contradicting the Pumping Lemma. Therefore, Maj is not regular.

The point is that we needed to find the right string to apply the Pumping Lemma. We’ll
see a few more examples next time.

4. 1/19

Today, we will prove the Myhill-Nerode Theorem, which will give more tools to show that
languages are not regular, and give a lower bound on the number of needed states. Then
we will give an algorithm such that given a DFA, it returns another DFA with the minimal
number of states.

First, we conclude the review of the Pumping Lemma 3.7 and give a few examples.
10

Example 4.1. This is the language of matched parentheses. The alphabet is Σ = {(,)}.
We define () ∈ L, E ∈ L implies that (E) ∈ L, and E1, E2 ∈ L implies that E1E2 ∈ L.

To prove that this language is not regular, we consider the string ((· · · ()) · · ·) ∈ L with
p open parentheses and p closed parentheses. Now, no matter how we write p = xyz, y
will always consist of some open parentheses, so xyyz will be unbalanced. Therefore, the
Pumping Lemma 3.7 says that this is not regular.

Example 4.2. Consider L = {s : |s| is a prime number}.
Suppose L is regular, so it has pumping length p. Let n be a prime number > p, and

consider string s of length |s| = n. Take s = 0 . . . 0, and write s = xyz. If the length of y
is l, then xyiz is of length n + (i − 1)l. If this language was regular, then there would be
n, l such that n + (i − 1)l is always prime. But this is not true for i = n + 1, so that’s a
contradiction.

Now, let’s look at the other approach.

Example 4.3. Recall Example 3.5 with Σ = {0, 1} and Maj = {s : s has more 1s than 0s }.
Suppose Maj is regular, and let M be a DFA for Maj. If M has k states, run M on the

strings ε ,0, 00, 000, . . . , 00 . . . 0 (with k zeros). Here, we pass through k+1 different inputs,
so there are different 0 ≤ i < j ≤ k and state q such that M reaches q on input 0i and 0j.

Now, 0i1j ∈ L and M accepts it. However, 0j1j /∈ L, but M still accepts it. The point is
that the machine M cannot distinguish between reading 0i and 0j.

The idea here is that we are looking for two initial segments, leaving the machine in the
same state.

Let’s give a definition that captures this idea.

Definition 4.4. Let L be a language. Two strings x and y are indistinguishable (relative
to L), written x ≈L y, if for every string z, xz ∈ L if and only if yz ∈ L. Otherwise, we
say that x and y are distinguishable: x 6≈L y. This means that there exists z such that
xz ∈ L, yz /∈ L or xz /∈ L, yz ∈ L.

Example 4.5. In the Maj example above, we see that 010 ≈Maj 100 because 010z has more
1s than 0s if and only if 100z has more 1s than 0s.

However, 00 6≈Maj 010 because if z = 1 has 001 ∈ Maj but 0101 /∈ Maj.

Example 4.6. Consider L = (0 + 1)∗0(0 + 1)(0 + 1) of strings that are 0 in the third-to-last
position. Then ε ≈L 111 because z has a zero in the 3rd to last position if and only if 111z
has a zero in the 3rd to last position.

However, 010 6≈L 100 because taking z = 0, we have 0100 /∈ L but 1000 ∈ L.

Proposition 4.7. Suppose that L is regular, and M is a DFA for L. Suppose that x 6≈L y
are distinguishable strings. Then M on input x reaches a different state than M on input y.

Proof. Suppose not. Then M reaches state q on input x and on input y. Here x and y are
indistinguishable, so xz ∈ L and yz /∈ L for some z. But from state q, the machine does
each computation precisely the same way, so M must reach the same state in the two cases.
That’s a contradiction. �

Remark. If there are k strings x1, . . . , xk such that xi 6≈L xj for all i 6= j. Then every DFA
for L has ≥ k states. We can show this by applying the proposition above.

11

Fact 4.8. If there are infinitely many strings x1, x2, . . . , all pairwise distinguishable, then L
is not regular.

This gives a way to show that languages are not regular. Such proofs are usually very
similar to proofs by the Pumping Lemma, but a bit more direct.

Example 4.9. Consider the example 4.1 of matched parentheses. Think about strings (, ((,
(((, . . . , ((· · · (. If x and y are strings of length i and j of open parentheses, and z =) · · ·)
of i closing parentheses, this shows that the language is not regular because x and y are
distinguishable for all i and j.

Example 4.10. Consider L = {xx : x is a binary string}. Here, the language is L =
{ε, 00, 11, 0000, 0101, 1010, . . . }. This shouldn’t be regular because we need to remember
half of a string to compare it with the other half. So we want to find infinitely many
indistinguishable strings.

Take strings 1, 01, 001, 0001, Take two of those x = 0i1 and y = 0j1. Take z = x.
Then x = 0i10i1 ∈ L, but y = 0j10i1 /∈ L, so we’ve produced an infinite set of distinguishable
strings.

Even if a language is regular, we can use this fact 4.8 to give a lower bound on the number
of states.

Example 4.11. Consider L = (0 + 1)∗0(0 + 1)(0 + 1). There are 8 distinguishable states:
000, 001, 010, . . . , 111, so any DFA for this needs to have at least 8 states.

Note that the property ≈L of being indistinguishable is an equivalence relation. This
means that

(1) x ≈L x,
(2) x ≈L y if and only if y ≈L x,
(3) x ≈L y and y ≈L z imply that x ≈L z.

This means that the strings Σ∗ can be decomposed into equivalence classes.

Theorem 4.12 (Myhill-Nerode). A language L is regular if and only if Σ∗ has a finite
number of equivalence classes under ≈L. If L is regular, the minimal number of states of a
DFA for L is the number of equivalence classes.

Proof. Taking into account everything that we’ve said so far (e.g. Fact 4.8), it only remains
to prove the following: If there are k equivalence classes of ≈L then L has a k-state DFA.

Example 4.13. Consider the example of L = (0 + 1)∗0(0 + 1). There are four different
equivalence classes, corresponding to 00, 01, 10, 11.

Which class does ε belong to? For εz ∈ L, we consider 00z, 01z, 10z, 11z, and observe
that ε is in the same class as 11. Similarly, 0 is in the same class as 10, and 1 is in the same
class as 11. Now, any longer string is in the same class as its last two bits. So in fact, those
four classes are actually all of the equivalence classes of this language. So if this theorem is
true, there should be a 4-state DFA. To construct the automaton, follow this procedure:

• allocate one state for each equivalence class.
• the state containing ε is the start state
• states containing strings in L are accept states
• from state [s], reading bit b transitions to state [sb].

12

In our example, this produces:

GFED@ABC?>=<89:;00

1

}}{{
{{

{{
{{

{{

0

��

GFED@ABC?>=<89:;01

1
!!C

CC
CC

CC
CC

C

0
,, GFED@ABC10

0

`B̀BBBBBBBB

1

ll

start // GFED@ABC11

0

>>|||||||||

1

LL

To make sure that this DFA makes sense, we need to check that if x ≈L y and b ∈ Σ, and
then xb ≈L yb. To see this, if for all z we have xz ∈ L if and only if yz ∈ L, then for all bz,
we have xbz ∈ L if and only if ybz ∈ L, so xb ≈L yb is actually a strictly weaker property.

To make sure that the DFA recognizes L, we should check that for all x the DFA on
input x reaches the state [x]. To prove this, we can proceed by induction on the length of
x. On input ε, we end at start state [ε]. For |x| = n + 1, take x = ynb. By the inductive
hypothesis, y takes the DFA to [y], and after reading b, we see that [yb] = [x]. So this is true
by induction. �

5. 1/24

A streaming algorithm is an algorithm that makes one pass through the data, uses a small
amount of memory, and has high efficiency. There are many real-time problems that require
this kind of algorithm, such as email messages or router data.

Example 5.1. We want to find the most frequent element of some given list of integers
x1, x2, . . . , xn.

It is a fact that if we are guaranteed that one number appears a majority (≥ n/2) of the
time, then there is a O(log n) memory algorithm that finds it. In fact, if each item is an l-bit
string, then the algorithm only needs l + log n memory.

In general, a simple algorithm uses O(n(l log n)) bits. We will assume that 2l > n2, and
we will prove that the memory is ≥ Ω(nl) and ≥ Ω(n(l + log n)).

This is different than from the case of automata, because for automata we have finite
memory and only want a yes or no answer. The differences are small enough that we can
still handle them.

To get finiteness, consider the most frequent element problem on streams of length n.
Now, consider the language L ⊆ ({0, 1})n where Σ = {0, 1}l of streams where (0, . . . , 0) is
the most frequent element. This is a problem that we can do.

If we have a streaming algorithm that uses m bits of memory and solves the most frequent
element problem, then Ln has a DFA with ≤ 2m states. So if Ln needs ≥ q states, then the
most frequent element problem needs ≥ log2 q bits of memory. To do this, we will find lots
of distinguishable strings.

First, pick three strings of zeros, and then pick strings s1, s2, . . . , s(n−5)/2, each of which is
used twice. Here, we have selected n− 2 items.

13

We claim that any two strings of this type are distinguishable. So look at two streams of
this type. Pick any element where they disagree, say s3 6= t3. Then look at

(0, . . . , 0), (0, . . . , 0), (0, . . . , 0), s1, s1, s2, s2, . . . , sn−5
2
, sn−5

2
, t3, t3

(0, . . . , 0), (0, . . . , 0), (0, . . . , 0), t1, t1, t2, t2, . . . , tn−5
2
, tn−5

2
, t3, t3.

So those are all strings that are distinguishable. We’ve found a distinguishable string for
each choice of n−5

2
strings in {0, 1}l − {(0, . . . , 0)}. We have therefore found(

2l − 1
n−5

2

)
≥
(

2 · 2l − 1

e(n− 5)

)n−5
2

distinguishable strings, where we have used
(
n
k

)
≥ (n

ek
)k. Therefore, every most frequent

element streaming algorithm needs

≥ log2

(
2 · 2l − 1

e(n− 5)

)n−5
2

=

(
n− 5

2

)
log2

(
2(2l − 1)

e(n− 5)

)
≥ Ω(n log2

√
2l) = Ω(nl).

Example 5.2. In this problem, we want to find the number of distinct elements. We use
the same setting as the previous problem: we have n elements of {0, 1}l. How many distinct
values appear in the sequence x1, . . . , xn? For example, we might want to count the number
of distinct users of a system.

First, we consider an approximation algorithm.

Algorithm 5.3. Consider some hash function h : {0, 1}l → (0, 1]. (For the analysis, assume
that it is a perfect hash function.) Then we take the elements x1, x2, . . . , xn and compute
the hash values h(x1), h(x2), . . . and stores the minimum m. We only need memory to store
m and h, which is O(log n) memory. It then outputs 1

m
.

Suppose that there are k distinct elements in x1, . . . , xn. Then h(x1), h(x2), . . . , h(xn) has k
distinct inputs, with repetitions. So we have k random real numbers in (0, 1] with repetitions.
This is equivalent to picking k real numbers in (0, 1] and outputting the minimum, and this
is approximately 1

k
. Therefore, the output of 1

m
is approximately k.

If we were not allowed to use randomness, we will show that there is no good streaming
algorithm for this problem. Here, we want to compute the number of distinct elements
exactly. Look at only n-element strings, and look at the language L ⊂ ({0, 1})n of streams
with n

2
distinct elements.

Consider all sequences of n
2

elements, all distinct, and consider s1, s2, . . . , sn/2. We claim
all strings of this form are distinguishable. Indeed, consider

s1, s2, . . . , sn/2, s1, s2, . . . , sn/2

t2, t2, . . . , tn/2, s1, s2, . . . , sn/2.

The first case has n/2 distinct elements, while the second case has more. Therefore, the

number of distinguishable streams is
(

2l

n/2

)
. Therefore, our lower bound is

log2

(
2l

n/2

)
≥ log2

(
2 · 2l

n

)n/2

= Ω

(
n

2
log2

2l

n

)
= Ω(nl).

14

Example 5.4. Suppose we had a deterministic algorithm A for the distinct elements problem
that gives a 10% approximation and uses m bits of memory.

It is a fact that it is possible to construct 2Ω(nl) strings in ({0, 1}l)n/2 such that each string
has n/2 distinct elements, and each pair of strings in the set has at most ≤ n/10 elements
in common.

To do this, think of a graph where every sequence of n/2 distinct elements of {0, 1}l is
a vertex, and we have an edge between two vertices if the sequence have ≥ n/10 elements
in common. If a graph has N vertices and degree ≤ D at each vertex, then there is an
independent set of size ≥ N/D + 1. The reason is that we can repeatedly pick a vertex and

delete all of its neighbors. In our case, we have N =
(

2l

n/2

)
and D ≤

(
n/2
n/10

)(
2l−n/10
4/10·n

)
, and this

is a calculation that we can now do.
Consider any two string from that set, say

s1, s2, . . . , sn/2

t1, t2, . . . , tn/2.

If 2m is smaller than the number of strings in our set, then there are two different strings
such that A has the same internal state after reading each of them. Attach a copy of the
first string to both of them. Since A is a deterministic algorithm, it gives the same output
to both of them. However, in the first case, the correct answer is n/2, which in the second
case, the correct answer is ≥ 9

10
n. Therefore, the algorithm A could not have given a correct

answer in both cases.
Therefore, the amount of memory that such an algorithm A consumes is

m ≥ log(# of strings in our set) ≥ log 2Ω(nl) = Ω(nl).

6. 1/26

Finite automata are very simple, but we understand them very well. Unfortunately, there’s
a lot that they can’t do. In this part of the course, we will look at Turing machines, and
determine what is computable, in general.

To start, a Turing machine (named after Turing) has finite state control, with finitely
many states. It is given an infinite tape of input, and it can also write. It can read one bit
of the table at a time, and move left or right based on a transition table.

The state diagrams for Turing machines look like those for finite automata, but they have
a lot more information:

//76540123 0→0,R
//

�→�,R
 B

BB
BB

BB
BB

B 76540123 �→�,R
//

0→0,R

��

_^]\XYZ[qaccept

WVUTPQRSqreject

This recognizes the language {0}. Alternatively,

//765401230→0,R
//

−→−,R
��<

<<
<<

<<
<<

76540123−→−,R//
0→0,R

��

_^]\XYZ[qaccept

76540123
ff

15

Here, instead of rejecting, we infinite loop.
What are differences between Turing machines and DFAs? The Turing machine can both

read and write, the head can move left and right, and the input doesn’t have to be read
entirely, and the computation can continue further after all input has ended. The accept
and reject states take immediate effect.

Example 6.1. Consider L = {w#w | w ∈ {0, 1}∗}. We know from the Pumping Lemma
3.7 that no DFA gives this language.

Here is pseudocode for this problem.

(1) If there’s no # on the tape, reject.
(2) While there is a bit to the left of #, replace the first bit with X and check if the first

bit to the right of the # is identical. (If not, reject.). Replace that bit with an X
too.

(3) If there’s a bit to the right of #, then reject. Else, accept.

Definition 6.2. A Turing machine is a 7-tuple T = (Q,Σ,Γ, δ, q0, qaccept, qreject).

• Q is a finite set of states
• Σ is the input alphabet, where � /∈ Σ.
• Γ is the tape alphabet, where � ∈ Φ and Σ ⊆ Γ
• δ : Q× Γ→ Q× Γ× {L,R}
• q0 is the start state
• qaccept is the accept state
• qreject is the reject state and qaccept 6= qreject

Definition 6.3. Let C1 and C2 be configurations of a machine M . We say that C1 yields
C2 if, after running M in C1 for one step, M is then in configuration C2

Example 6.4. Suppose δ(q1, b) = (q2, c, L). Then aaq1bb yields aq2acb.
Suppose δ(q1, a) = (q2, c, R). Then cabq1a yields cabcq2�.

Definition 6.5. Let w ∈ Σ∗ and M be a Turing machine. M accepts w if there are
configurations C0, C1, . . . , Ck such that

• C0 = q0w
• Ci yields Ci+1 for i = 0, . . . , k − 1
• Ck contains the accepting state qaccept.

The states C0, . . . , Ck is called the accepting computation history. This will be unique for
every input.

Definition 6.6. A Turing machine recognizes a language L if M accepts all and only those
strings in L.

A language L is called recognizable or recursively enumerable if some Turing machine
recognizes L.

Definition 6.7. A language L is called decidable (recursive) if some Turing machine decides
it.

It turns out that the set of decidable languages is a proper subset of the recognizable
languages.

16

Definition 6.8. A Turing machine decides a language if M accepts all strings in L and
rejects all strings not in L.

Example 6.9. Consider {02n | n ≥ 0}. The pumping lemma says that this is not regular.
Here is pseudocode:

(1) Sweep from left to right, crossing out every other 0
(2) If in stage 1, the tape had only one 0, accept.
(3) If in stage 1, the tape had an odd number of 0s, reject.
(4) Move the head back to the first input symbol.
(5) Go to stage 1.

Why does this work? Every time we return to stage 1, the number of 0s on the tape is
halved.

Example 6.10. C = {aibjck | k = i× j, i, j, k ≥ 1}.
Pseudocode:

(1) If the input doesn’t match a∗b∗c∗, reject (e.g. using a DFA).
(2) Move the head back to the leftmost symbol.
(3) Cross off an a, scan to the right until b. Sweep between bs and cs, crossing off one of

each until all bs are crossed off. If all cs get crossed off while doing this, reject.
(4) Uncross all the bs. If there’s another a left, then repeat stage 3. If all as are crossed

out, check if all c are crossed off. If yes, then accept. Else, reject.

For example, we have

aabbbcccccc→ xabbbcccccc→ xayyyzzzccc→ xabbbzzzccc→ xxyyyzzzzzz.

One amazing aspect of Turing machine is that we can define many variations on them.
But so long as the new model is finite, it will be equivalent to the usual Turing machine.

We can define Turing machines to have multiple tapes. It has a head that can move left
or right on each tape. The transitions are then δ : Q× Γk → Q× Γk × {L,R}k.

Theorem 6.11. Every multitape Turing machine can be transformed into a single tape
Turing machine.

In fact, the single tape machine only runs polynomially slower than the multitape machine.

Proof. For every tape, we have a special symbol #. On the single tape machine, simply put
all of the data on the k tapes onto a single tape, separated by #. Put a mark on each of
the k head positions (by doubling the tape alphabet to include marked bits); these are like
virtual tape heads. If we move a tape head so far that we run past what we have stored on
the single tape, shift everything to the right by one square. �

We can define nondeterministic Turing machines analogously to the case of DFAs. This
is a powerful idea when considering efficiency, but with respect to language recognition, this
is actually equivalent to Turing machines.

Theorem 6.12. Every nondeterministic Turing machine N can be transformed into a single
tape Turing machine M that recognizes the same language.

Proof. For all strings C ∈ {Q ∩ Γ ∩#}∗ is lexicographical order, check if C = C0# · · ·#Ck

where C0, . . . , Ck is some accepting computation history for N on w. If so, accept. �
17

We can encode a Turing machine as a bit string.

0n10m10k10s10t10r10u1

This means that there are n states, m tape symbols, the first k are input symbols, the start
state is s, the accept state is t, the reject state is r, and the blank symbol is u. Then we can
encode transitions as ((p, a), (q, b, L)) = 0p10a10q10b10 and ((p, a), (q, b, R)) = 0p10a10q10b11.

Similarly, we can encode DFAs and NFAs as bit strings. So we can define the following
languages:

• ADFA = {(B,w) | B is a DFA that accepts string w}
• ANFA = {(B,w) | B is an NFA that accepts string w}
• ATM = {(B,w) | B is a Turing machine that accepts string w}

(We can encode (x, y) = 0|x|1xy.)

Theorem 6.13. ADFA is decidable.

This means that there is a Turing machine that can simulate any DFA.

Proof. We directly simulate the DFA on w. The idea is very simple but the details are
complicated. �

Theorem 6.14. ANFA is decidable.

Proof. Given an NFA, make it a DFA. This is a completely effective procedure, and we can
implement it. Now apply the previous result. �

It turns out that ATM is recognizable but not decidable. We’ll see more about this later.

Theorem 6.15. There is a universal Turing machine U that can take as input

• the code of an arbitrary Turing machine M
• an input string w

such that U(m,w) accepts if and only if M(w) accepts.

This is a fundamental property: Turing machines can run their own code! Note that
DFAs and NFAs do not have this property. That is, ADFA is not a regular language. (This
is something that we can prove using the Pumping Lemma 3.7.)

We’ve seen that we can change the definition of a Turing machine in many different
ways without producing a more powerful machine. This led to the Church-Turing thesis:
Everyone’s intuitive notion of algorithms is given by Turing machines. This thesis is tested
every time you write a program that does something!

We’ve seen Turing machines, and they’re nice because they are really simple. The bad
side is that implementing things in Turing machines is unpleasant. We get around this by
being less formal and writing pseudocode. But it is important to keep in mind: How does
one actually implement such a thing?

Theorem 6.16. A language L is decidable if both it and its complement are recognizable.

Recall that given L ⊆ Σ∗, define ¬L = Σ∗ − L.

Proof. We are given a Turing machine M1 that recognizes A and a Turing machine that
recognizes ¬A. We want a machine that decides A. To do this, run M1 and M2 at the same
time, e.g. alternately take steps on each of the two machines. �

18

Theorem 6.17. There are languages over {0, 1} that are not decidable.

Assuming the Church-Turing thesis, this means that there are problems that no computing
device can solve.

We will prove this using a counting argument. We will show that there is no onto function
from the set of all Turing machines to the set of all languages over {0, 1}. That is, every
mapping from Turing machines to languages must “miss” some language.

7. 1/31

Today we will look at Turing machines in more depth, and discuss undecidability, recog-
nition, and enumeration.

Recall:

Theorem 7.1. L is decidable if and only if both L and ¬L are recognizable.

Proof. We have Turing machines M1 and M2 that recognize A and ¬A. We then building
a machine M that decides A by running M1 and M2 on different tapes. If M1 halts then
accept; if M2 halts then reject. �

The goal of this lecture is to show that there are languages over {0, 1} that are not
decidable. Assuming the Church-Turing these, this means that there are problems that no
computing device can solve.

In fact, we can show that there are languages over {0, 1} that are not recognizable. Here’s
an outline:

(1) Every recognizable language can be associated with a Turing machine.
(2) Every Turing machine corresponds to a bit string.
(3) So there is a 1-1 mapping from the set of all recognizable languages to {0, 1}∗.
(4) But the set of all languages has a bijection with the power set of {0, 1}∗.
(5) The power set ofA is always larger thanA, so there must be unrecognizable languages.

Informally, this says that “There are more problems to solve than there are programs to
solve them.”

Theorem 7.2. Let L be any set, and let 2L be the power set of L. There is no onto map
from L to 2L.

A map f : A→ B is onto if for all b ∈ B there exists a ∈ A such that f(a) = b.

Proof. Assume, for a contradiction, that there is an onto map f : L→ 2L.
Let S = {x ∈ L : x /∈ f(x)} ∈ 2L. If f is onto, then there is a y ∈ L where f(y) = S.

Suppose that y ∈ S. By definition of S, y /∈ f(y) = S. So y /∈ S. By definition of S,
y /∈ f(y) = S. This is a contradiction. �

The moral here is that no map from L to the power set 2L can cover all elements in 2L.
No matter what the set L is, the power set always has larger cardinality.

Theorem 7.3. There are undecidable (and unrecognizable) languages over {0, 1}.

Proof. Consider a map from recognizable languages over {0, 1}∗ into Turing machines. Since
the Turing machines can be represented by bit strings, we can injectively map it into {0, 1}∗,
which we will call L. This means that L covers all recognizable languages.

19

However, the set of all languages over {0, 1}∗ is the set of strings of 0s and 1s, which is
the set of all subsets of L, or 2L. Therefore, there are unrecognizable languages. �

What property of Turing machines did we use here? All we used was that Turing ma-
chines have a finite description (via finite bit strings). This means that all models of finite
computation have problems that they cannot solve. Also, the set L is countable, but the set
2L is not countable.

These issues also appear in set theory. In the early 1900’s, logicians were trying to define
consistent foundations for mathematics. Suppose that X is the universe of all axioms. Then
Frege’s Axiom is: Let P : X → {0, 1}. Then we can define {S ∈ X : P (S) = 1}. Russell
defined F = {S ∈ X : S /∈ S}. Suppose F ∈ F . Then by definition, F /∈ F . So F /∈ F , and
by definition, F ∈ F . This is bad, and it is called Russell’s paradox. This means that this
naive set theory is inconsistent.

Theorem 7.4. There is no onto function from the positive integers Z+ to the real numbers
in (0, 1).

Proof. Suppose that f is such a function. Write out a table of values of f . Pick a number
r such that the nth digits of r is 1 if the nth digit of f(n) is not 1, and 0 otherwise. This
means that f(n) 6= r for all n. So r is never output by f , and we are done. This proof is
due to Cantor. �

That’s a negative result, but we can be more positive.

Theorem 7.5. Let Z+ = {1, 2, 3, 4, . . . }. There is a bijection between Z+ and Z+ × Z+.

Proof. To show this, make a table of pairs, and successively look at diagonals. �

The Calkin-Wilf tree gives a bijection between the positive integers and the rational num-
bers. In this tree, a

b
has two children: a

a+b
and b

a+b
. Enumerating the rationals requires doing

a breadth first search on the tree. It is interesting that each rational appears precisely once.
There is also Stern’s diatomic sequence, which also gives such a bijection and has a nice
recursive definition.

Now, we give a concrete undecidable problem. Recall that we defined the language ATM =
{(M,w) : M is a Turing machine that accepts string w}.

Theorem 7.6. ATM is recognizable but not decidable.

Proof. We can define a universal Turing machine can recognizes ATM .
Assume that machine H decides ATM . Then H(M,w) accepts of M accepts w and rejects

if M does not accept w. Construct a new Turing machine D as follows: On input M , run
H on (M,M) and output the opposite of H.

The D(D) should reject if D accepts D and accept if D does not accept D, which is
nonsense. �

Now, we give a more constructive proof of this result.

Proof. Assume that machine H recognizes ATM . Then H(M,w) accepts if M accepts w,
and rejects or loops otherwise. Construct a new Turing machine DH as follows: reject if M
accepts M , accept if M rejects M , and loops if M loops on M .

20

Now, DH rejects if DH accepts DH , and DH accepts if DH rejects DH . Both of these are
nonsense, so DH must loop on DH . There is no contradiction here: DH must run forever on
DH .

Given any machine H recognizing ATM , we can effectively construct an instance (DH , DH)
which does not belong to ATM but H runs forever on the input (DH , DH). Therefore, H
cannot decide ATM . Given any program that recognizes the acceptance problem, we can
efficiently construct an input where the program hangs. �

Corollary 7.7. ¬ATM is not recognizable!

Proof. Suppose ¬ATM is recognizable. We know that ATM is recognizable, but then ATM is
decidable, which is not true. �

Consider a language HALTTM = {(M,w) : M is a Turing machine that halts on string w}.

Theorem 7.8. HALTTM is undecidable.

Proof. Assume there is H that decides HALTTM . We construct M ′ that decides ATM .
Define M ′(M,w) to run H(M,w). If H rejects then reject. If H accepts then run M on

w until it gives an answer, and return that answer. �

Consider a language EMPTYTM = {M : M is a Turing machine such that L(M) = ∅}.
Given a program, does it always reject? This is called the Emptiness problem.

Theorem 7.9. EMPTYTM is undecidable.

Proof. Assume there is a Turing machine E that decides EMPTYTM . We’ll use it to get a
decider D for ATM .

Build a Turing machine D(M,w) with the behavior: M ′(x) rejects if x 6= w, otherwise
simulate M(w). Then run E(M ′). If E accepts, reject. If E rejects, then accept. This
machine decides ATM . �

This allows us to say something about the complement of emptiness: ¬EMPTYTM =
{M : M is a Turing machine such that L(M) 6= ∅}. Given a program, does it accept some
input?

Theorem 7.10. ¬EMPTYTM is recognizable.

Proof. Define M ′(M) as follows. For all pairs of positive integers (i, t), let x be the ith string
is lexicographical order. Determine if M(x) accepts within t steps. If yes then accept.

Then L(M) 6= ∅ if and only if M ′ halts and accepts M . �

Corollary 7.11. EMPTYTM is unrecognizable.

Proof. Suppose not. Then EMPTYTM and ¬EMPTYTM are recognizable, so EMPTYTM

decidable, which is false. �

One can often show that a language L is undecidable by showing that if L is decidable,
then so is ATM . We reduce ATM to the language L, or ATM ≤ L. For example, we’ve shown
that ATM ≤ HALTTM .

Definition 7.12. f : Σ∗ → Σ∗ is a computable function if there is a Turing machine M that
halts with just f(w) written on its tape, for every input w.

21

A language A is mapping reducible to language B, written A ≤M B if there is a computable
f : Σ∗ → Σ∗ such that for every w, w ∈ A if and only if f(w) ∈ B.
f is a called a mapping reduction (or many-one reduction) from A to B.

Next time, we’ll look for carefully at undecidability and reductions between problems.

8. 2/2

The topic for today is reductions and undecidability.
Recall that last time we had a concrete undecidable problem ATM . This was recognizable

but not decidable, and as a corollary, ¬ATM is not recognizable. This was used to prove
undecidability of HALTTM .

One can often show that a language L is undecidable by showing that if L is decidable
then so is ATM . We reduce ATM to the language L, or ATM ≤ L to say that L is harder
than ATM .

Definition 8.1. f : Σ∗ → Σ∗ is a computable function if there is a Turing machine M that
halts with just f(w) written on its tape, for every input w.

Definition 8.2. A language A is mapping reducible to language B, written A ≤m B, if
there is a computable f : Σ∗ → Σ∗ such that for every w, w ∈ A if and only if f(w) ∈ B.

Theorem 8.3. If A ≤m B and B ≤m C then A ≤m C.

This ≤m relation behaves like some sort of partial order.

Proof. Draw a picture and wave your hands at it. �

Theorem 8.4. If A ≤m B and B is decidable, then A is decidable.

Proof. Let M decide B and let f be a reduction from A to B. To decide A, we build a
new machine M ′. To compute M ′(w), it computes f(w), runs M on f(w), and outputs its
answer. This works because of the property that w ∈ A if and only if f(w) ∈ B. �

Theorem 8.5. If A ≤m B and B is recognizable, then A recognizable.

Proof. Let M recognize B and let f be a reduction from A to B. To recognize A, we build
a new machine M ′. To compute M ′(w), it computes f(w), runs M on f(w), and outputs its
answer if it ever receives one. This works because of the property that w ∈ A if and only if
f(w) ∈ B. �

Corollary 8.6. If A ≤m B and A is undecidable then B is undecidable.

Corollary 8.7. If A ≤m B and A is unrecognizable, then B is unrecognizable.

All undecidability proofs we’ve seen can be viewed as constructing an f that reduces ATM

to some language.

Theorem 8.8. We showed ATM ≤m HALTTM .

Is there a reduction HALTTM ≤ ATM? Yes. Define f(M,w) = (M ′, w) where M ′(w)
accepts if M(w) ever halts, and loops otherwise. Then (M,w) ∈ HALTTM if and only if
(M ′, w) ∈ ATM .

We also had the emptiness problem, and we showed that EMPTYTM is undecidable.
22

Theorem 8.9. In fact, EMPTYTM is unrecognizable.

Proof. Show that ¬ATM ≤m EMPTYTM .
Define f(M,w) to output a Turing machine M ′ with the behavior M ′(x) is if x 6= w the

reject, otherwise run M(w). �

We can also consider the regularity problem. We write REGULARTM = {M : M is a Turing machine and L(M) is regular}.
Given a program, is it equivalent to some DFA?

Theorem 8.10. REGULARTM is not recognizable.

Proof. We show ¬ATM ≤m REGULARTM .
Define f(M,w) to output a Turing machine M ′ such that M ′(x) behaves as follows: if

x = 0n1n then simulate M(w), else reject. �

The equivalence problem: EQTM = {(M,N) : M , N are Turing machines and L(M) = L(N)}.

Theorem 8.11. EQTM is unrecognizable.

Proof. We reduce EMPTYTM to EQTM .
Let M∅ to be some Turing machine with no path from start state to accept state. Define

f(M) = (M,M∅). �

Now, consider Post’s Correspondence Problem. We call this the PCP game, or “domino
solitaire”. We have a finite number of dominoes, with a string of each of top and bottom.
We have an unbounded stack of these. The goal is to take some subset of these dominoes
and line them up, so that the string on the top is the same as the string on the bottom. This
is a simple little game. In some cases, we can’t possibly have a match. When can we win?

(1) If every top string is longer than the corresponding bottom one, there can’t be a
match.

(2) If there is a domino with the same string on the top and on the bottom, these is a
match.

Problem 8.12 (Post’s Correspondence Problem). Given a collection of domino types, can
we build up a match?

Let PCP = {P : P is a set of dominoes with a match }.

Theorem 8.13. PCP is undecidable.

We’ll do this by considering a variant of the game, called the FPCP game. It is just like
the PCP game, except that a match has to start with the first domino type.

Theorem 8.14. FPCP is undecidable.

Proof. We will reduce ATM to FPCP.
Recall that an accepting computation history for M on w is a sequence of configurations

C0, C1, . . . , Ck where C0 is the start configuration q0w, Ck is an accepting configuration, and
each configuration Ci yields Ci+1. M(w) accepts if and only if such a history exists.

We’ll build an instance of FPCP such that a match encodes an accepting computation
history. The simple rules of this game are enough to simulate arbitrary Turing machines. We
want the string produced by a match to be the accepting computation history, with different
steps separated by some special character #.

23

(1) Given (M,w) we will construct an instance P of FPCP in seven steps. We have a
special domino type that must go first, so first put

#

#q0w1w2 . . . wn#

into P .
(2) If δ(q, a) = (p, b, R) then add

qa

bp
.

(3) If δ(q, a) = (p, b, L) then add
cqa

pcb

for all c ∈ Γ.
(4) Add a

a
for all a ∈ Γ.

(5) Add #
#

and #
�#

.

(6) Add
aqacc

qacc

,
qacca

qacc

for all a ∈ Γ, including �. (For Turing machines, this corresponds to the idea that
we don’t care what happens after we are in an accept state.)

(7) Add
qacc##

#
.

When we run this, the bottom is longer than the top, so we are forced to make certain
choices to ensure that the top and bottom match.

We’ve shown that given (M,w) we can effectively construct an instance of FPCP that has
a match if and only if M accepts w. So ATM ≤m FPCP .

Can we reduce FPCP to PCP? For u = u1u2 . . . un, where ui ∈ Γ ∪Q ∪ {#}, define

?u = ?u1 ? u2 ? u3 · · · ? un
?u = u1 ? u2 ? u3 · · · ? un?
?u = ?u1 ? u2 ? u3 · · · ? un ? .

For each FPCP instance
t1
b1

t2
b2

· · · tk
bk

we consider the PCP instance
?t1
?b1?

?t1
b1?

?t2
b2?
· · · ?tk

bk?

?�
�
.

Even though this is a PCP instance, we can’t start with anything besides the first domino.
Therefore, we’ve shown that ATM ≤m PCP and PCP is undecidable. �

Now, we discuss oracle Turing machines and hierarchies of undecidable problems. Recall
that we have languages ATM , HALTTM , and EMPTYTM . Are all of these “equally” hard?
How can we even formalize that?

Oracle Turing machines are just like normal Turing machines, except they have access to
an oracle. They have a new kind of state, q?. In this state, the oracle gives us answers to

24

recognition problems, e.g. is (M,w) in ATM . To make this work with our formalism, we go
to a state qyes or qno depending on what the oracle says.

Slightly more formally:

Definition 8.15. An oracle is a set B to which the Turing machine may ask membership
questions and the Turing machine always receives a correct answer in one step.

This makes sense even if B is not decidable!

Definition 8.16. A is recognizable in B if there is an oracle Turing machine M with oracle
B that recognizes A.

Definition 8.17. A is decidable in B if there is an oracle Turing machine M with oracle B
that decides A.

Proposition 8.18. HALTTM is decidable in ATM .

Proof. On input (M,w), decide if M halts on w as follows. Ask the orcale for ATM if M
accepts w. If yes, then accept. Switch the accept and reject states, and query if oracle again.
If yes, then accept. Otherwise, reject. �

Proposition 8.19. ATM is decidable in HALTTM .

Proof. Same as for normal Turing machines. �

We can say that A Turing reduces to B, or A ≤T B.

Theorem 8.20. If A ≤m B then A ≤T B.

Proof. If A ≤m B then there is a computable function f : Σ∗ → Σ∗ where for every w, w ∈ A
if and only if f(w) ∈ B. We can thus use an oracle for B to decide A. �

Theorem 8.21. ¬HALTTM ≤T HALTTM .

Theorem 8.22. ¬HALTTM 6≤m HALTTM .

There has many a lot of work on oracle Turing machines, and there are many hierarchies
of problems. As an example, the following problem cannot be decided by a Turing machine
with an oracle for the Halting problem. Define

SUPERHALT = {(M,x) : M with an oracle for the halting problem, halts on x}.

We can still use the same diagonalization argument here! Suppose that H decides that
SUPERHALT (with an oracle). Define D(X) to be if H(X,X) accepts (with oracle) then
loop, else accept.

9. 2/7

This lecture will be about some very powerful tools in computability.

Proposition 9.1. Define

REVERSE = {M : M is a TM such that for all w, M(w) accepts iff M(wR) accepts}.

This is undecidable.
25

Proof. Given a machine D for deciding the language REVERSE, we show how to decide
ATM.

Construct the machine Mw taking input x. If x = 01, it accepts; else, if x = 10, it runs
M(w). Feed the resulting language L(Mw) into our decider D for REVERSE. Now, if M
accepts w, then the language is two strings {10, 01} which is closed under reverse, and the
decider says yes. But if M does not accept w, then the decider says no; {01} is not closed
under reverse. �

Proposition 9.2. Define

{(M,w) : M is a TM that on input w, tries to move its head past the left end of the tape}.
This is undecidable.

Proof. We reduce from ATM to the above language.
On input (M,w), make a Turing machine N that marks the leftmost tape cell, shifts input

w over one square, then simulates M(w). If M moves to the marked cell, N moves the head
back to the right. If M accepts, N tries to move its head past the left end of the tape.

Therefore, (M,w) is in ATM if and only if (N,w) has this property. �

Proposition 9.3. Define

{(M,w) : M is a TM that on input w, moves its head left at least once, at some point}.
This is decidable.

Proof. On input (M,w), run the machine for |QM | + |w| + 1 steps. We accept if M ’s head
moved left at all. Otherwise, we reject.

Why does this work? Suppose we simulate the machine for more than |w| steps, and it
never moved left. Then it would be reading blanks. Now, run it for |QM | steps. On each
step, it’s reading a blank and never goes left. At this moment, we’re out of possibilities. It
must repeat states, and we’ve ended up in an infinite loop of reading blanks and moving
right. �

Let L be a language over Turing machines. Assume that L satisfies the following properties:
Semantic: For any Turing machines M1 and M2 where L(M1) = L(M2), M1 ∈ L if and

only if M2 ∈ L. This means that the language recognized by the machine determines whether
the machine is in the language.

Nontrivial : There are Turing machines Myes and Mno, where Myes ∈ L and Mno /∈ L.
Then L is undecidable.

Example 9.4. Here are some properties which are semantic:

• M accepts ε
• L(M) = {0}
• L(M) is nonempty
• L(M) is regular
• M accepts exactly 154 strings.

In general, L = {M : P (M) is true} is undecidable.

Example 9.5. Here are some nonsemantic properties:

• M halts and rejects ε
26

• M tries to move its head off the left end of the tape, on input ε
• M never moves its head left on input ε
• M has exactly 154 states
• M halts on all inputs.

Theorem 9.6 (Rice’s Theorem). Any semantic nontrivial L over Turing machines is unde-
cidable.

“Every nontrivial semantic property of Turing machines is undecidable.”

Proof. We’ll reduce from ATM to the language L. Define M∅ to be a Turing machine that
never halts. Assume, WLOG, that M∅ /∈ L. Let Myes ∈ L (such a machine exists, by
assumption).

Here’s the reduction. On input (M,w), output Mw(x), where if M accepts w and Myes

accepts x, then accept.
If M accepts w, then L(Mw) = L(Myes). Since Myes ∈ L, we have Mw ∈ L.
If M does not accept w, then L(Mw) = L(M∅) = ∅. Since M∅ /∈ L, we have Mw /∈ L. So

we have a reduction from ATM to the language L.
If M∅ ∈ L, then we reduce ¬ATM to L. Define: Mw(x) to be if M accepts w and Mno

accepts x, then accept.
In this case, if M accepts w, then L(Mw) is the same language as L(Mno) /∈ L. If M does

not accept w, then L(Mw) is the same language as L(M∅) ∈ L. �

One of these is recognizable; the other is not. Which one is which?

(1) {M : L(M) contains at most 154 strings}
(2) {M : L(M) contains at least 154 strings}

The second is recognizable. Just enumerate all possible strings and simulate each of them,
counting how many are in L(M). If we ever hit 154, we can accept; otherwise, we just keep
going.

Is there a generic condition for unrecognizability, in the style of Rice’s Theorem for unde-
cidability?

Theorem 9.7 (Rice’s Theorem, part II). Let L be a language over Turing machines. Assume
that L is semantic and non-monotone: There are Turing machines Myes and Mno where
Myes ∈ L, Mno /∈ L, and L(Myes) ⊂ L(Mno). Then L is unrecognizable.

“Every non-monotone semantic property of Turing machines is unrecognizable.”

Example 9.8. Here are monotone properties. This means that if Myes ∈ L, then for all
T ⊇ L(Myes), if L(Mno) = T , then Mno ∈ L.

• L(M) is infinite
• L(M) = Σ∗

• L(M) contains at least 154 strings
• L(M) contains 11111.

As we accept more strings, we don’t fall out of having the property.

Example 9.9. Here are non-monotone properties:

• L(M) is finite
• L(M) = {0}

27

• L(M) is regular
• L(M) is not regular
• L(M) contains at most 154 strings.

There is some point at which accepting more strings would make us fall out of having the
property.

The point is that L = {M : P (M) is true} is unrecognizable.

Proof. Idea: Give a mapping reduction from ¬ATM to L.
On input (M,w), output the following machine Mw(x): Run Myes(x), Mno(x), M(w). If

M accepts w and Mno accepts x, then accept. If Myes accepts x, then accept.
If M accepts w, then L(Mw) = L(Mno). Since L(Myes) ⊂ L(Mno), we have Mw /∈ L
If M does not accept w, then L(Mw) = L(Myes). Since Myes ∈ L, we have Mw ∈ L.
So (M,w) ∈ ATM if and only if Mw /∈ L. �

Now, we discuss self-reference and the Recursion Theorem.

Theorem 9.10. There is a computable function q : Σ∗ → Σ∗, where for any string w, q(w)
is the description of a Turing machine Pw that on any input, prints out w and then accepts.

We can use this simple construct to get a self-printing Turing machine. Define a machine
B such that given M , it print a machine PM that prints M , and runs M(M).

What happens when given any input w, it runs machine PB to get the code of B, and
feeds that to B. This prints exactly the same machine: given w, prints PB, prints B, and
runs B(B). This is a machine that prints its own code.

10. 2/9

Theorem 10.1. There is a computable function q : Σ∗ → Σ∗, where for any string w, q(w)
is the description of a Turing machine Pw that on any input, prints out w and then accepts.

This is a building block we will use for self-reference.
We give a generic construction of a Turing machine that prints its own code. We find a

machine B such that given input M , it prints out the following machine: given input w,
it runs PM , prints out M twice, and executes M(M) by simulating on a universal Turing
machine.

What happens when we have a machine that given input w, first runs PB, and feeds its
output B to B itself? The output of this machine is the same as the machine itself.

Suppose that in general we want to design a program that prints its own description.
How? We want to say something like “Print this sentence.” The problem is that there
is no programming counterpart for “this”. To get self-reference, we want something like
this: “Print two copies of the following, the second copy in quotes: “Print two copies of
the following, the second copy in quotes:”” The first part of this corresponds to B, and the
second part corresponds to PB.

Now, we can discuss the Recursion Theorem.

Theorem 10.2 (Recursion Theorem). Let T be a Turing machine that computes a function
t : Σ∗ × Σ∗ → Σ∗. There is a Turing machine R that computes a function r : Σ∗ → Σ∗,
where for every string w, r(w) = t(R,w).

28

In general, this means that we can assume that a Turing machine has access to its own
code. Given any Turing machine t, we have a machine R outputting t(R,w) on input w.

Proof. Suppose Turing machine T takes (a, b) as input and outputs t(a, b).
Consider the machine B that takes input N as a description of a Turing machine, and

outputs the machine: given input w, run PN to get N , and output N(N,w).
Let machine M take two inputs N and w. It feeds N to B and outputs some description

Y . Then M runs and outputs T (Y,w).
Here’s the machine R: Given input w, run PM to get machine M . Feed that into machine

B to get some machine R. Finally, feed R and w into T to get t(R,w).
We claim that the R output by B in the previous step is actually a description of the

entire machine. What does R look like? This is the output of machine B on input M , so it
takes input w, runs PM to get M , and runs M(M,w). But we know what M is, so here’s
actually machine R: Given input w, run PM to get M , feed M , w to M , so give M to B to
get Y , and output T (Y,w). So this is a description of B.

Let’s phrase this in another way:
Define FOOx(Y) to output x and halt.
Define BAR(M) to output “N(X) that runs FOOM outputting M , and runs M on

(M,x).”
Define Q(N, x) to run BAR(N) outputting E, and runs T on (E, x).
Then R(X) is: Run FOOQ outputting Q. Run BAR(Q) outputting D. Run T on (D, x).
Let D(X) be: Run FOOQ outputting Q. Run BAR(Q) outputting E. Run T on (E, x).
Then D = R, so R(x) = T (R, x). �

The moral is that a Turing machine can obtain its own description, and compute with it.
Given any computable t, we can get a computable r such that r(w) = t(R,w) where R

is a description of r. We can use the operation “Obtain your own description” in Turing
machine pseudocode.

Theorem 10.3. ATM is undecidable.

Proof using the recursion theorem 10.2. Assume that H decides ATM. Construct machine B
such that on input w:

(1) Obtains its own description B.
(2) Runs H on (B,w) and flips the output.

Running B on input w always does the opposite of what H says that it should. �

Another application of the Recursion Theorem is the Fixed Point Theorem:

Theorem 10.4 (Fixed Point Theorem). Let t : Σ∗ → Σ∗ be any computable function. There
is a Turing machine F such that t(F) describes a Turing machine that is equivalent to F .

Proof. Here is pseudocode for the Turing machine F . On input w:

(1) Obtain the description F .
(2) Let G be the output of t(F) and interpret G as a Turing machine.
(3) Accept w if and only if G(w) accepts.

�
29

We can use the Fixed Point Theorem to prove Rice’s Theorem 9.6. Recall that this says
that if L is a language over Turing machines that is nontrivial and semantic, then L is
undecidable.

Proof of Rice’s Theorem 9.6. Suppose we could decide L. Then define t(M) so that if M ∈
L, output a Turing machine Mno such that Mno /∈ L. Otherwise, output a Turing machine
Myes such that Myes ∈ L.

For all Turing machines M , the function t(M) always outputs a Turing machine that is
not equivalent to M by the definition of semantic. This contradicts the fixed-point theorem
10.4! �

Now we will discuss computability in mathematics.

Definition 10.5. A formal system describes a formal language for

• writing mathematical statements
• has a definition of what statements are “true”
• a definition of a proof of a statement

Example 10.6. Any Turing machine M defines some formal system.
For example, think of all mathematical statements to be Σ∗. String w represents the

statement “M accepts w”. The set of true statements is L(M).
A proof that “w is true” is an accepting computation history for M on w.

Definition 10.7. A formal system F is consistent or sound if no false statement has a valid
proof in F . (Proof implies truth.)

A formal system F is complete if every true statement has a valid proof in F . (Truth
implies proof.)

Finding a consistent and complete formal system was a dream of many mathematicians.

Theorem 10.8. For every “interesting” formal system F :

• (Gödel 1931) F is incomplete. There are true statements that cannot be proved.
• (Gödel 1931) The consistency of F cannot be proved using proofs in F .
• (Church-Turing 1936) The problem of checking whether a given statement in F has

a proof is undecidable.

Definition 10.9. A formal system F is interesting if:

(1) Any mathematical statement describable in English can also be described within F .
Given M and w, there is an SM,w in F such that SM,w is true in F if and only if M
accepts w.

(2) Proofs are convincing: It should be possible to check that a proof of a theorem is
correct. Given (S, P), it is decidable if P is a proof of S in F .

(3) If there is a proof of S that’s describable in English, then there’s a proof describable
in F . If M accepts w, then there is a proof in F on SM,w.

Theorem 10.10 (Gödel 1931). Every consistent F is incomplete: there are true statements
that cannot be proved.

Proof. Let SM,w in F be true if and only if M accepts w.
Define Turing machine G(x):

30

(1) Obtain own description G
(2) Construct statement S ′ = ¬SG,ε

(3) Search for a proof of S ′ in F over all finite length strings. Accept if a proof is found.

We claim that S ′ is true but has no proof in F . If there were such a proof, then it would be
true that G accepts ε, which is a contradiction. S ′ basically says: “There is no proof for me
in F .” �

Theorem 10.11 (Gödel 1931). The consistency of F cannot be proved within any interesing
consistent F .

Proof. Suppose we can prove that “F is consistent” in F .
We constructed ¬SG,ε, which says that “G does not accept ε”, which we showed is true,

but has no proof in F .
Here, G accepts ε if and only if there is a proof of ¬SG,ε within F .
But if there’s a proof in F of “F is consistent” then there’s a proof in F that ¬SG,ε is

true: “If SG,ε is true, then there is a proof in F of ¬SG,ε. But F is consistent. Therefore
¬SG,ε is true. But SG,ε and ¬SG,ε cannot both be true. Therefore, ¬SG,ε is true.” �

Finally, we want to show that for any interesting formal system, provability is undecidable:

Theorem 10.12 (Church-Turing 1936). For every interesting F , let PROVABLEF = {S :
there’s a proof in F of S, or there’s a proof in F of ¬S}.

Proof. Suppose PROVABLEF is decidable with P . Then we can decide ATM as follows:
On input (M,w), run the Turing machine P on input SM,w. If P accepts, go through all

possible proof sin F . If you find a proof of SM,w then accept. If you find a proof of ¬SM,w

then reject. If P rejects, then reject. �

11. 2/16

Turing machines are a universal notion of computation.
Kolmogorov complexity is motivated by: Is there a universal notion of information? Can

we quantify how much information is contained in a string? Given two strings, which has
more information? A string 01010101 . . . is very simple, but a string of seemingly random
bits seems much more complicated.

The idea is: The more we can compress a string, the less information it contains. The
amount of information in a string is the shortest way of describing that string. From the
Church-Turing thesis, we should use Turing machines to describe inputs.

Definition 11.1. Let x ∈ {0, 1}∗. The shortest description of x, denoted d(x), is the
lexicographically shortest string (M,w) such that M(w) halts with x on its tape.

Theorem 11.2. There is a 1-1 computable function 〈·, ·〉 : Σ∗ × Σ∗ → Σ∗ and computable
functions π1, π2 : Σ∗ → Σ∗ such that z = 〈M,w〉 if and only if π1(z) = M and π2(z) = w.

The goal is to encode pairs of strings as another string.

Proof. Let Z(x1, x2, . . . , xk) = 0x10x2 . . . 0xk1. Then we can define 〈M,w〉 = Z(M)w.
To decode this pair, look at odd positions until we find an odd position with a 1. Then

even positions to the left form the first string and everything to the right is the second string.
Note that | 〈M,w〉 | = 2|M |+ |w|+ 1. �

31

This is pretty good within constant factors. In some cases, we would like to do better.

Example 11.3. Here is a better pairing function. Let b(n) be the binary encoding of n.
Again, let Z(x1, x2, . . . , xk) = 0x10x2 . . . 0xk1. Now, encode via 〈M,w〉 = Z(b(|M |))Mw.
For example, 〈10110, 101〉 = 010001110110101 because b(|10110|) = 101. Now, | 〈M,w〉 | =
2 log(|M |) + |M |+ |w|+ 1, which is much better.

Definition 11.4. The Kolmogorov complexity of x, denoted as K(x), is |d(x)|.

Theorem 11.5. There is a c so that for all x in {0, 1}∗ such that K(x) ≤ |x|+ c.

“The amount of information in x isn’t much more than |x|.”
Proof. Define M so that on any input w, it halts. On any string x, M(x) halts with x on its
tape. This implies that K(x) ≤ | 〈M,x〉 | ≤ 2|M |+ |x|+ 1 ≤ c+ |x|. �

Repetitive strings have low information.

Theorem 11.6. There is a c so that for all x in {0, 1}∗ such that K(xx) ≤ |x|+ c.

“The amount of information in xx isn’t much more than that in x.”

Proof. Define N so that on input 〈M,w〉 , let s = M(w). Print ss. Let 〈M,w〉 be the
shortest description of x. Then 〈N, 〈M,w〉〉 is a description of xx. Therefore, K(xx) ≤
| 〈N, 〈M,x〉〉 | ≤ 2|N |+K(x) + 1 ≤ c+ |x|. �

Corollary 11.7. There is a fixed c so that for all n ≥ 2 and all x ∈ {0, 1}∗, K(xn) ≤
K(x) + c log n.

“The information in xn isn’t much more than that in x.”

Proof. Define the Turing machine N taking input 〈n,M,w〉. Let x = M(w). Print x for n
times.

If 〈M,w〉 is the shortest description of x, then K(xn) ≤ K(〈N, 〈n,M, x〉〉) ≤ 2|N | +
d log n+K(x) ≤ c log n+K(x) for some constants c and d. �

Example 11.8. If w = (01)n then K((01)n) ≤ O(log n).

Does the model matter? Turing machines are one programming language. If we use other
programming languages, could we get significantly shortest descriptions?

Definition 11.9. An interpreter is a semi-computable function p : Σ∗ → Σ∗ that takes
programs as input and prints their outputs.

Definition 11.10. Let x ∈ {0, 1}∗. The shortest description of x under p (called dp(x)) is
the lexicographically shortest string for which p(dp(x)) = x.

Define Kp(x) = |dp(x)|.

Theorem 11.11. For every interpreter p, there is some constant c so that for all x ∈ {0, 1}∗,
K(x) ≤ Kp(x) + c.

The moral is that using any other programming language would only change K(x) by
some constant.

Proof. Define machine M so that on w it outputs p(w). Then 〈M,dp(x)〉 is a description of
x, and K(x) ≤ | 〈M,dp(x)〉 | ≤ 2|M |+Kp(x) + 1 ≤ c+Kp(x). �

32

What are the limits of compression? There are incompressible strings of every length!

Theorem 11.12. For all n, there is an x ∈ {0, 1}n such that K(x) ≥ n.

Proof. This is a counting argument.
The number of binary strings of length n is 2n, and the number of descriptions of length< n

is at most the number of binary strings of length < n, which is 1+2+4+ · · ·+2n−1 = 2n−1.
Therefore, there’s at least one n-bit sting that does not have a description of length

< n. �

In turns out that most strings are very incompressible.

Theorem 11.13. For all n and c, Prx∈{0,1}n [K(x) ≥ n− c] ≥ 1− 1
2c

.

Proof. This is another counting argument.
The number of binary strings of length n is 2n, and the number of descriptions of length

< n− c is at most the number of binary strings of length < n− c, which is 2n−c − 1.
So the probability that a random x satisfies K(x) ≤ n−c is at most (2n−c−1)/2n < 1

2c
. �

The problem is that it seems hard to figure if a string is compressible. It is hard to give
an algorithm to do optimal compression. Define COMPRESS = {(x, c) : K(x) ≤ c}.

Theorem 11.14. COMPRESS is undecidable.

The intuition is that if this were decidable, we could design an algorithm that prints the
least incompressible string of length n. But such a string could be succinctly described, by
giving the algorithm, and n in binary.

This relates to the Berry paradox: “The smallest integer that cannot be defined in less
than thirteen words.”

Proof. Assume that COMPRESS has a decider. Define machine M so that on input x ∈
{0, 1}∗, we interpret x as an integer N . (Then |x| ≤ logN .) For all y ∈ {0, 1}∗ in lexico-
graphical order, if (y,N) /∈ COMPRESS then print y and halt.
M(x) prints the shortest string y′ with K(y′) > N . But 〈M,x〉 describes y′ and | 〈M,x〉 | ≤

c+ logN . So N < K(y′) ≤ c+ logN , which is a contradiction. �

Theorem 11.15. ATM is undecidable.

Proof. We reduce from COMPRESS to ATM.
Given a pair (x, c), construct a Turing machineMx,c: Over all pairs 〈M ′, w〉 with | 〈M ′, w〉 | ≤

c, simulate each M ′ on w in parallel. If some M ′ halts and prints x, then accept.
K(x) ≤ c if and only if Mx,c accepts ε. �

Recall that a formal system F is interesting if

(1) Any mathematical statement describable in English can also be described within F .
(2) Proofs are convincing: it should be possible to check that a proof of a theorem is

correct.
(3) If there is a proof of S then there’s a proof describable in F .

Theorem 11.16. For every interesting consistent F , there is a t such that “K(x) > t” is
unprovable in F .

33

Proof. Define a Turing machine M that given input k, searches over all strings x and proofs
P for a proof P in F that K(x) > k. Output x if found.

Suppose M(k) halts with output x′. Then K(x′) = K(〈M,k〉) ≤ c + log k for some c.
Because F is consistent, K(x′) > k is true.

But k < c+ log k only holds for finitely many k. Choose t to be greater than all of these
k. Then M(t) cannot halt, so “K(x) > t” has no proof. �

But for a randomly chosen x of length t + 100, we know that “K(x) > t” is true with
probability at least 1− 1/2100. We can randomly generate true statements in F which have
no proof in F with high probability.

12. 2/21

Complexity theory is the study of what can or cannot be computed with limited compu-
tational resources, such as time or space. We start with time complexity.

We measure time complexity by counting the elementary steps required for a machine to
halt.

Example 12.1. Consider the language A = {0k1k | k ≥ 0}. Here is a Turing machine that
decides this language:

On input of length n:

(1) Scan across the tape and reject if the string is not of the form 0i1j.
(2) Repeat the following if both 0s and 1s remain on the tape. Scan across the tape,

crossing off a single 0 and a single 1.
(3) If 0s remain after all 1s have been crossed off, or vice-versa, reject. Otherwise, accept.

Let M be a Turing machine that halts on all inputs.

Definition 12.2. The running time or time complexity of M is the function f : N → N
such that f(n) is the maximum number of steps taken by M over any input of length n.

Definition 12.3.

TIME(t(n)) = {L′ | there is a TM M with TIMEcomplexity O(t(n)) so that L′ = L(M)}
= {L′ | L′ us a language decided by a TM with O(t(n)) running TIME}

Example 12.4. We showed that A = {0k1k | k ≥ 0} ∈ TIME(n2).
Actually, A ∈ TIME(n log n). Define the machine M taking input w. If w is not of the

form 0∗1∗, reject. Repeat the following until all bits of w are crossed out: If the parity of 0s
does not equal the parity of 1s, reject. Cross out every other 0. Cross out every other 1.

Theorem 12.5. A = {0k1k | k ≥ 0} can be decided in O(n) time with a two-tape Turing
machine.

Remark. But this cannot be done with a one-tape machine.

Proof. Scan all 0s, copy them to the second tape.
Scan all 1s. For each 1 scanned, cross off a 0 from the second tape. �

Different models of computation can yield different running times for the same language!

Theorem 12.6. Let t(n) be a function such that t(n) ≥ n. Then every t(n) time multi-tape
Turing machine has an equivalent O(t(n)2) single tape Turing machine.

34

Proof. Our simulation of multitape Turing machines achieved this! �

If you get more time to work, then you can solve strictly more problems.

Theorem 12.7 (Time Hierarchy Theorem). For all “reasonable” functions f, g : N → N
where f(n) = O(g(n)1/3), TIME(f(n)) (TIME(g(n)).

Proof. Make a Turing machine N that “does the opposite” of all g(n)1/2 time machines on
at least one input, and runs in O(g(n)) time.

Define a machine N taking input w: If w does not have the form M10i, reject. Simulate
M on w for f(|w|) steps. (This simulation itself uses f(|w|)2.)

If M tries to take more time, reject. Accept w if and only if M rejects w.
Eventually, w is large enough that f(|w|) < g(|w|). Simulation can be carried out using a

multitape simulation. We need to compute f(|w|) using only O(g(|w|)) time. �

Definition 12.8. A function f : N → N is time-constructible if the function g : {0, 1}∗ →
{0, 1}∗ with g(1n) defined as “f(n) in binary” is computable in f(n) time.

We also have that for all k and for all ε > 0, we have TIME(nk) (TIME(nk+ε).
There is an infinite hierarchy of increasingly more time-consuming problems.
Are there important everyday problems that are high up in the hierarchy? A natural

problem that needs exactly n10 time? This is an open question.

Definition 12.9.
P =

⋃
k∈N

TIME(nk).

We should have an extended Church-Turing thesis: Everyone’s intuitive notion of efficient
algorithms corresponds to polynomial-time Turing machines.

This us much more controversial than the Church-Turing thesis. Potential counterexam-
ples include n100 time algorithms, quantum algorithms, and randomized algorithms.

Definition 12.10. Nondeterministic Turing machines are just like standard Turing ma-
chines, except:

(1) The machine may proceed according to several possibilities.
(2) The machine accepts a string if there exists a path from the start state to the ac-

cepting state.

Similarly, we can define accepting computation histories for N on w. Note that these do
not have to be unique.

Definition 12.11.

NTIME(t(n)) = {L | L is decided by a O(t(n)) time nondeterministic TM}.
Note that TIME(t(n)) ⊆ NTIME(t(n)). Is this a proper containment for all t(n) = nk?

This is an open question!
We briefly review Boolean formulas.

Definition 12.12. A satisfying assignment is a setting of the variables that makes the
formula true.

Example 12.13. For example, ϕ = (¬x ∧ y) ∨ z. Then x = y = z = 1 is a satisfying
assignment for ϕ.

35

Definition 12.14. A Boolean formula is satisfiable if there exists a satisfying assignment
for it.

Example 12.15. a ∧ b ∧ c ∧ ¬d is satisfiable.
¬(x ∨ y) ∧ x is unsatisfiable.

Definition 12.16. SAT = {ϕ | ϕ is a satisfiable Boolean formula}.

Definition 12.17. A 3cnf-formula is of the form

(x1 ∨ ¬x2 ∨ x3) ∧ (x4 ∨ x2 ∨ x5) ∧ (x3 ∨ ¬x2 ∨ ¬x1).

3SAT = {ϕ | ϕ is a satisfiable 3-cnf formula}.

Theorem 12.18. 3SAT ∈ NTIME(n2).

Proof. On input ϕ:

(1) Check if the formula is in 3cnf.
(2) For each variable, nondeterministically substitute it with 0 or 1.
(3) Test if the assignment satisfies ϕ. �

Definition 12.19.

NP =
⋃
k∈N

NTIME(nk).

Theorem 12.20. L ∈ NP if and only if there exists a polynomial time Turing machine V
and k such that we can define L as

L = {x | ∃y[|y| ≤ |x|k and V (x, y) accepts]}

Proof.

(1) If L = {x | ∃y[|y| ≤ |x|k and V (x, y) accepts]} then L ∈ NP.
Just nondeterministically guess y and then run V (x, y).

(2) If L ∈ NP then L = {x | ∃y[|y| ≤ |x|k and V (x, y) accepts]}.
Let N be a nondeterministic polynomial-time Turing machine that decides L. De-

fine V (x, y) to accept if and only if y is an accepting computation history of N on
x. �

A language is in NP if and only if there are polynomial-length proofs for membership in
the language.

SAT is in NP for this reason.

Example 12.21 (Hamiltonian path problem). Given a directed graph with modes, a Hamil-
tonian path traverses through each node exactly once.

Assume a reasonable encoding of graphs (e.g. the adjacency matrix is reasonable).

HAMPATH = {(G, s, t) | G is a directed graph with a Hamiltonian path from s to t.}

Theorem 12.22. HAMPATH ∈ NP
36

13. 2/23

Today we will discuss NP-completeness and Cook’s Theorem. NP-complete problems are
the hardest problems in NP.

Recall that a language is in NP if and only if there are polynomial-length proofs for
membership in the language. For example, SAT is in NP. It is hard to prove that something
is unsatisfiable, but proving that something is satisfiable only requires given an example.

Example 13.1 (k-clique problem). Given a graph and a number k, is there a complete
subgraph on k nodes? Define

CLIQUE = {(G, k) : G is an undirected graph with a k-clique}.

Theorem 13.2. CLIQUE ∈ NP.

This is because a k-clique itself is a proof that (G, k) is in CLIQUE.

The big open question in complexity theory is:

Problem 13.3.
P = NP?

“Can problem solving be efficiently automated?”
What would happen if P = NP?

• Mathematicians may be out of a job. We can define

Short-ProvabilityF = {T | T has a proof in F of length ≤ |T |2}.
This is in NP, and P=NP would make this easy.
• Cryptography as we know it would probably be impossible, since it depends on one-

way functions.
• In principle, every aspect of daily life could be efficiently and globally optimized.

This is all too good to be true. We conjecture that P 6= NP.

Definition 13.4. f : Σ∗ → Σ∗ is a polynomial time computable function if some polynomial-
time Turing machine M , on every input w, halts with just f(w) on its tape.

Definition 13.5. Language A is polynomial time reducible to language B, written A ≤P B,
if there is a polynomial time computable function f : Σ∗ → Σ∗ such that w ∈ A if and only
if f(w) ∈ B.

Note that |f(w)| ≤ |w|k for some constant k.

Theorem 13.6. If A ≤P B and B ≤P C then A ≤P C.

Proof. A polynomial of a polynomial is still a polynomial. �

Theorem 13.7. If A ≤P B and B ∈ P then A ∈ P.

Proof. Let MB is a polynomial-time Turing machine that decides B. Let f be a polynomial-
time reduction from A to B.

We build a machine MA that decides A as follows: On input w, compute f(w), run MB

on f(w), and output its answer. �

Corollary 13.8. If A ≤P B and A /∈ P then B /∈ P.
37

Definition 13.9. A language B is NP-complete if:

(1) B ∈ NP
(2) Every A in NP is polynomial-time reducible to B. That is, A ≤P B.

Suppose B is NP-complete. If B ∈ P then P = NP. Then assuming the conjecture that
P 6= NP, this means that such a problem B is not solvable in O(nk) time, for any k.

Theorem 13.10 (Cook-Levin). SAT and 3SAT are NP-complete.

Corollary 13.11. 3SAT is in P if and only if P = NP.

Proof. We know that 3SAT ∈ NP. We will show that every language A in NP is polynomial
time reducible to 3SAT.

We give a polynomial time reduction for A to 3SAT. The reduction turns a string w into
a 3cnf formula ϕ such that w ∈ A if and only if ϕ ∈ 3SAT.

Definition 13.12. A tableau for N on w is an nk×nk table whose rows are the configurations
of some possible computation of N on input w.

The first row is the starting configuration of some Turing machine, and the next row is
some configuration that can be reached in one step (not necessarily unique). A tableau is
accepting if any row of the tableau is an accepting configuration. A machine N accepts w if
and only if there is an accepting tableau for N on w.

Given a string w, our Boolean 3cnf formula ϕ will describe all of the logical constraints
that any accepting tableau for N on w must satisfy. The 3cnf formula ϕ will be satisfiable
if and only if there is an accepting tableau.

Let C = Q ∪ Γ ∪ {#}. Each of the (nk)2 entries of a tableau is a cell. Then cell[i, j] is
the value of the cell at row i and column j, or the jth symbol in the ith configuration. For
every i and j (1 ≤ i, j ≤ nk) and for every s ∈ C we have a variable xi,j,s. The total number
of variables is |C|n2k, which is O(n2k). These xi,j,s are the variables of ϕ and represent the
contents of the cells. We will have xi,j,s = 1 if and only if cell[i, j] = s.

We now design ϕ so that a satisfying assignment to the variables xi,j,s corresponds to an
accepting tableau for N on w (an assignment to the cell[i, j]).

The formula ϕ will be the and of four cnf formulas: ϕ = ϕcell ∧ ϕstart ∧ ϕrmaccept ∧ ϕmove.

• ϕcell: for all i, j, exactly one s ∈ C has xi,j,s = 1.
• ϕstart: the first row of the table is the start configuration of N on w
• ϕaccept: an accepting configuration is the last row of the table.
• ϕmove: every row is a configuration that legally follows from the previous row.

We can define

ϕcell =
∧

1≤i≤j≤nk

[(∨
s∈C

xi,j,s

)
∧

(∨
s,t∈C,s6=t

(¬xi,j,s ∨ ¬xi,j,t)

)]
,

ϕstart = x1,1,# ∧ x1,2,q0 ,∧ · · · ∧ x1,nk,#

ϕaccept =
∨

1≤j≤nk

xnk,j,qaccept .

ϕmove checks that every 2× 3 window of cells is legal.
38

Lemma 13.13. If the top row of the tableau is the start configuration and every window of
the tableau is legal, then each row of the table yields the next row of the table.

Proof. Very similar to the PCP problem’s undecidability. �

Write the (i, j) window of a tableau as the tuple (a1, . . . , a6). Then

ϕmove

∧
1≤i≤nk−1
1≤j≤nk−2

 ∧
(a1,...,a6) is not legal

¬xi,j,a1 ∨ ¬xi,j+1,a2 ,∨xi,j+2,a3 ∨ xi+1,l,a+4 ∨ · · ·

 .

Now, we need to turn this into a 3cnf. Everything was ands or ors. We just need to make
the ors small: (a1 ∨ · · · at) = (a1 ∨ a2 ∨ z1) ∧ (¬z1 ∨ a3 ∨ z2) ∧ (¬z2 ∨ a4 ∨ z3) · · · .

What’s the total length of ϕ? ϕcell has O(n2k) clauses. ϕstart has O(nk) clauses. ϕaccept

has O(nk) clauses. ϕmove has O(n2k) clauses. �

Read Luca’s notes for an alternative proof of the Cook-Levin theorem. The sketch of this
is that for every deterministic nk time V (x, y), we define CIRCUIT-SAT: Given a logical
circuit C(y), is there an input A such that C(A) = 1. Show that CIRCUIT-SAT is NP-
hard. The nk × nk tableau can be simulated with a logical circuit of O(n2k) gates. Reduce
CIRCUIT-SAT to 3SAT in polynomial time, and conclude that 3SAT is also NP-hard.

Is 3SAT solvable in O(n) time on a multitape Turing machine? If yes, then not only is
P=NP true, but we would have a machine that could crank out short proofs of theorems.
This is an open question.

14. 2/28

In the previous lecture, we saw one example of NP-complete problems. Today. we’ll see
more.

Given a problem in Π ∈ NP, how can we prove it is NP-hard? There is a general recipe:

(1) Take a problem Σ that you know to be NP-hard (e.g. 3SAT).
(2) Prove that Σ ≤P Π.

Then for all A ∈ NP, A ≤P Σ and Σ ≤P Π. We conclude that A ≤P Π.
Recall the k-clique problem, and define

CLIQUE = {(G, k) : G is an undirected graph with a k-clique}.
Note that (G, k) ∈ CLIQUE implies that (G, k − 1) ∈ CLIQUE, for k ≥ 1.

Theorem 14.1. CLIQUE is NP-complete.

Proof. First, observe that CLIQUE ∈ NP because we can verify it.
Now, we will show that 3SAT ≤P CLIQUE. To do this, we want to transform a 3-cnf

formula ϕ into (G, k) such that ϕ ∈ 3SAT if and only if (G, k) ∈ CLIQUE. We want this
transformation that can be done in time that is polynomial in the length of ϕ. How can we
encode a logic problem as a graph problem?

Let m be the number of clauses of ϕ. Set k = m and make a graph G with m clusters
of up to 3 nodes each. Each cluster corresponds to a clause of ϕ. Each node in a cluster is
labeled with a literal from the clause. We put edges between all pairs of nodes in different
clusters, except pairs of the form {x,¬x}. We do not connect any nodes in the same cluster.

39

A clique is a way to pick a literal for each clause in a consistent way. This then corresponds
to a satisfying assignment. If there are k clauses, we look for a k-clique.

We will show that ϕ ∈ 3SAT if and only if (G,m) ∈ CLIQUE.

Lemma 14.2. If ϕ ∈ 3SAT then (G,m) ∈ CLIQUE.

Proof. Given a SAT assignment A of ϕ, for every clause C there is at least one literal set
true by A. Let vC be the vertex in G corresponding to the first literal of C satisfied by A.

We claim that S = {vC : C ∈ ϕ} is an m-clique. If there is not an edge between vC and
vC′ , then vC and vC′ must label inconsistent literals x and ¬x. But A cannot satisfy both x
and ¬x. Therefore, (vC , vC′) ∈ E for all vC , vC′ ∈ S, and hence we’ve proven the claim. �

Lemma 14.3. If (G,m) ∈ CLIQUE then ϕ ∈ 3SAT.

Proof. Given an m-clique S of G, we’ll construct a SAT assignment A of ϕ.
We claim that S has exactly one node for each cluster. For each variable x of ϕ, we make

an assignment A. Set x to be true if and only if there is a v ∈ S with label S.
For every clause C, one vertex from the cluster for C is in S. Therefore, A satisfies at

least one literal of C, so C is satisfied by A. �

This proves the theorem. �

A related problem is independent set. Given a graph G = (V,E) and integer k, is there
S ⊆ V such that |S| ≥ k and no two vertices in S have an edge.

Proposition 14.4. CLIQUE ≤P IS.

Proof. Given a graph G = (V,E), output G′ = (V,E ′) where E ′ = {(u, v) : (u, v) /∈ E}.
Note that (G, k) ∈ CLIQUE if and only if (G′, k) ∈ IS. �

Another problem about graphs is vertex cover. This is a set of nodes that covers all edges.
Formally, define

VERTEX-COVER = {(G, k) : G is an undirected graph with a vertex cover of size k}.
First, VERTEX-COVER is in NP because it is easy to verify, by looping over all of the
edges.

Proposition 14.5. IS ≤P VERTEX-COVER

Proof. We claim that for every graph G = (V,E), S ⊆ V is an independent set if and only
if V \ S is a vertex cover.

To see this, note that S is independent if and only if for any vertices u, v ∈ S then
(u, v) /∈ E, or contrapostively, if (u, v) ∈ E then either u /∈ S or v /∈ S. This means that
V \ S is a vertex cover.

So therefore (G, k) ∈ IS if and only if (G, |V | − k) ∈ VERTEX-COVER. �

Now, consider the subset sum problem. Given a set N = {a1, a2, . . . , an} of positive
integers, and a positive integer t, is there some S such that

∑
i∈S ai = t?

Define

SUBSET-SUM = {(N, t) : there exists S such that
∑
i∈S

ai = t}

40

Theorem 14.6. There is an algorithm for solving SUBSET-SUM in time polynomial in n
and t.

But t can be specified in log t bits, so this is not an algorithm that runs in polynomial
time in the input.

Proof. Use dynamic programming. �

Proposition 14.7. VERTEX-COVER ≤P SUBSET-SUM.

Proof. We want to reduce a graph to a set of numbers.
Given (G, k), let E = {e0, . . . , em−1} and V = {1, . . . , n}. Our (N, t) will have |N | = n+m.

For every ei ∈ E, put in N the integer bi = 4i. For every i ∈ V , put in N the integer
ai = 4m +

∑
k:{i,k}∈E 4i. Set t = k · 4m +

∑m−1
i=0 (2 · 4i).

We claim that (G, k) ∈ VERTEX-COVER then (N, t) ∈ SUBSET-SUM. Suppose that
C ⊆ V is a vertex cover with k vertices. Let S = {ai : i ∈ C} ∪ {bi : |ei ∩C| = 1}. We claim
that

∑
x∈S x = t. Think of the numbers as being in base 4, as vectors with m components.

Just think about it.
We also have to do the other direction. Suppose S ⊆ V and T ⊆ E is such that

∑
i∈S ai +∑

ei∈T bi = t. We claim that S is a vertex cover of size at most k. As before, just think
about it. �

15. 3/1

We have been talking about NP-complete problems. We’ve seen Cook’s theorem, giving
reductions from any NP problem to SAT and 3SAT, which then reduce to CLIQUE, INDE-
PENDENT SET, VERTEX COVER, and from there to SUBSET SUM. Today, we will see
reductions to STEINER TREE and PARTITION, and from there to BIN PACKING and
MULTI PROCESSOR SCHEDULING.

There are algorithms to solve SAT that can succeed on inputs of several thousand clauses
long; they run faster on some inputs and slower on others. There is no algorithm that can
run at a fixed time for all inputs though, and finding such an algorithm would mean that all
of the problems that we have been considering would be easy to solve.

Note that in addition to the reductions mentioned above, there are also reductions in the
other direction, since each of them are NP-complete. Even though the other problems look
very different, they are all almost the same, up to polynomial time reduction.

Recall the subset sum problem from last time:

Definition 15.1 (Subset sum). The input is a1, a2, . . . , an and t. The goal is to find some
subset S ⊆ {1, . . . , n} such that

∑
i∈S ai = t.

This has a nice dynamical programming solution, but it takes exponential time.
There is a special case of subset sum that it still as hard as the general case.

Definition 15.2 (Partition). The input is a1, . . . , an. The goal is to find S ⊆ {1, . . . , n}
such that

∑
i∈S ai =

∑
i/∈S ai.

We want to show that this is NP-hard, so we write down a reduction.

Proposition 15.3. Subset sum ≤P Partition.
41

Proof. Given a1, . . . , an, t, we want to construct a′1, . . . , a
′
m such that there exists S with∑

i∈S ai = t if and only if there exists S ′ with
∑

i∈S a
′
i =

∑
i/∈S a

′
i.

Here’s a construction that doesn’t work: Let the new elements be a1, . . . , an, an+1 =
t, an+2 = A− t where A =

∑
ai. If there is a solution for subset sum on the original input,

all of the rest of the items will add up to A − t. The old question is: Is there a way to
partition the input into sets adding up to t and A− t. But since we added two items t and
A − t, we can complete each set to have size A. This becomes an instance of the partition
problem. In the other direction, for every solution of the partition problem, if the two new
items are not in the same set, then we clearly get a solution of the subset sum problem
(just by removing the extra items). But what if the two new items are put together? This
does not solve subset sum! So we don’t have a reduction in the reverse direction. This is a
common mistake in reductions, and it yields a reduction that doesn’t work.

Now, we write down a reduction that does work. The new elements are a1, . . . , an, an+1 =
A + t and an+2 = 2A− t. With this definition, if there is a solution for subset sum, we can
complete it with the new elements to get a solution for partition. And if we have a partition
solution where the two new elements don’t appear on the same side, then we remove them
to get a solution of subset sum. And this time, the new elements are too big to appear
together, so nothing breaks. This gives us the reduction that we wanted. �

Now we discuss the bin packing problem.

Definition 15.4 (Bin packing). The input is an integer B known as the “bin size”. Then
we have n items, of size s1, . . . , sn. The goal is to fit the items in as few bins as possible, so
that the size of items in each bin is ≤ B.

This is the most basic version, with one-dimensional items. To make this optimization
problem into a decision problem, add an input integer k. We ask if it is possible to fit the
items into at most k bins.

If we have an instance of partition a1, . . . , an, then we can construct an instance of bin
packing with k = 2 and B = 1

2

∑n
i=1 ai, where the sizes are a1, . . . , an.

There are lots of scheduling problems. As an example, we look at one of the simpler
versions.

Definition 15.5 (Scheduling). The input is the number of identical machines m. We also
have n tasks, with running time t1, . . . , tn; these tasks have no dependencies. The goal is to
minimize completion time.

To make this into a decision problem, and an input T . Is it possible to schedule so that
the completion time is ≤ T?

This is exactly the same problem as bin packing. The number of bins is the number of
machines. The size of the bins is the completion time, and the sizes of items is the time of
the tasks. They are different optimizations, but they look like the same decision problem.

We will finish with the Steiner tree problem, which has a much more interesting reduction
from vertex cover.

The original problem, as studied by Steiner, looks like this: Given some points in the
plane, we want to connect the points and have minimal total length. It clearly suffices to
consider a tree, which is the smallest thing preserving connectivity. But even for four points,
the minimal spanning tree is not the right answer. Instead, we want two vertices in the

42

middle of the rectangle, connecting to the four vertices. This is a solved problem in the
plane for three and four points, but it becomes a hard problem when the number of points
is large.

Here is a more abstract version of the problem. In addition to the input points, think
about having a grid of extra points that we can use as vertices. Now, we have a symmetric
matrix of connection costs.

Definition 15.6 (Steiner Tree). As input, we have a set of points X consisting of required
points R and Steiner points S which can also be used. We have a distance function d(x, y) for
each x, y ∈ X. The goal is to find a tree T = (V,E) where R ⊆ V ⊆ X and

∑
(u,v)∈E d(u, v)

is minimized.

We also expect that our distance function is a metric.
We will now reduce from vertex cover to Steiner tree. In terms of similarity, both have

a notion of points, connectivity, and graphs. Also, both problems have hard constraints.
In vertex cover, we have pick any subset of vertices, but we must cover all of the edges.
In Steiner tree, we can add however many Steiner vertices we like, but we must include
all required points. This suggests that edges in the vertex cover problem should become
required points in the Steiner tree problem.

Example 15.7. Consider
?>=<89:;a

==
==

==
==

=
GFED@ABCb

?>=<89:;c GFED@ABCd

This gives required points ab, bd, cd, ad, ac. There are also Steiner vertices a, b, c, d. A valid
vertex cover is a, d.

We connect all Steiner points to the required points (edge in vertex cover) using that
vertex.

a

}}
}}

}}
}}

}

PPPPPPPPPPPPPPPPPP

UUUUUUUUUUUUUUUUUUUUUUUUUUU b c d

}}
}}

}}
}}

}

nnnnnnnnnnnnnnnnnn

iiiiiiiiiiiiiiiiiiiiiiiiiii

GFED@ABCab GFED@ABCbd GFED@ABCcd ONMLHIJKad GFED@ABCac

We only need the edges corresponding to the Steiner points in the vertex cover, which requires
6 connections.

To make sure this works, we should also add cost 1 connections between Steiner points.

Here is the reduction. Start with an instance of vertex cover G = (V,E). We construct a
Steiner tree instance where the R = E and S = V . Then d(u, (u, v)) = 1, and d(u, v) = 1.
All other distances must be defined to satisfy the metric property, and are defined by shortest
paths; in fact, all distances will be 1, 2, 3.

We claim that G has a vertex cover of size ≤ k if and only if the Steiner tree instance has
solution of cost ≤ |E|+ k − 1.

Suppose thatG has a vertex cover C ⊆ V of size k. Using only Steiner points corresponding
to the vertices in the vertex cover, all required points have a connection to one of these
vertices, and all relevant Steiner points are connected. That is, the vertices are E ∪C, with

43

all length 1 edges, and it is connected. Therefore, it has a spanning tree. This is a Steiner
tree for the network, connecting all required vertices, plus some Steiner points. The number
of edges in this tree is |E|+ |C| − 1 = |E|+ k − 1, which is a valid Steiner tree solution.

Now, we have to show that given any Steiner tree solution, we can still get back a vertex
cover solution. Suppose we are given a Steiner tree solution of cost |E| + k − 1. We want
to use only cost 1 connections, so replace every connection of cost ≥ 2 by a path of length
c using only cost-1 connections. In doing that, we do not increase the cost of the solution.
At the end of this, we get a connected graph that includes all of E and has only length 1
edges, take a spanning tree of this graph, which still has cost ≤ |E| + k − 1. This tree has
at most |E|+ k vertices and includes all |E| required vertices, so it has ≤ k Steiner vertices.
We claim that those k vertices must be a vertex cover. This is because all required points
are connected to the rest of the tree, and there are no longer any edges between required
points (since that has length > 1). Therefore, all required points must be connected to one
of our Steiner points. This shows the desired result.

16. 3/6

Today we will start a new topic: complexity of space (memory) restricted algorithms.
Sometimes, memory can be an even more critical resource than time when considering the
feasibility of a problem. We will be able to classify problems according to these restrictions,
and we will have a sense of completeness like that of NP-completeness.

Definition 16.1. A language L is decidable in space complexity s(n) if there is a Turing
machine M that decides L and on every input x of length n accesses at most s(n) cells of
the tape.

Just as for time complexity, we want space consumption to grow polynomially as the size
of the input. This forms a reasonable notion of efficiency.

Definition 16.2. PSPACE = {L : L is decidable in space ≤ p(n) where p is polynomial}

Fact 16.3. PSPACE contains the class NP. This is because we can enumerate all strings of
polynomial length and check if each is in the language. Since verification takes polynomial
time, it can also only polynomial space.

Suppose we are given a Boolean formula (x1∨x2)∧ (x2∨x3)∧ (x3∨x1). Two players take
turns setting values for the Boolean variables. At the end, the first player wins in the formula
is true; otherwise, the second player wins. In fact, in this example, there is a forced win for the
first player by setting x1 to be true. This means that ∃x1∀x2∃x3(x1∨x2)∧(x2∨x3)∧(x3∨x1).

Problem 16.4. In general, this is called the Quantified Boolean Formula problem. Given
input

∃x1∀x2∃x3∀x4 . . . ϕ

for some Boolean formula ϕ, the goal is to decide if the quantified formula is true.

Remark. Since we can rename the variables, we can actually process the variables in any
order Also, we can also mix ∀ and ∃ in any order, since we can just introduce extra variables
that don’t appear in the formula.

Proposition 16.5. QBF is in PSPACE.
44

Proof. The polynomial space algorithm will solve this problem by brute force. It is easiest
to think of it as a recursive algorithm V .

Given input Q1x1Q2x2 . . . Qnxnϕ(· · ·) for quantifiers Q1, . . . , Qn, the algorithm computes

b1 := V (Q2x2 . . . Qnxnϕ(x1 ← F . . .))

b2 := V (Q2x2 . . . Qnxnϕ(x1 ← T . . .)).

If Q1 = ∃, we accept if and only if b1 ∨ b2. Otherwise, we accept if and only if b1 ∧ b2.
Here, s(n) = s(n − 1) + p(n), so s(n) = np(n) is polynomial. This is extremely time

inefficient but is space efficient, because we can reuse space but we cannot reuse time. �

Definition 16.6. EXP = TIME(2no(1)
).

We claim that PSPACE is contained in EXP.

Fact 16.7. If machine M halts on input x and uses ≤ s(n) space, then it halts in ≤ 2O(s(n))

steps.

Proof. Consider all configurations of the machine M on input x. A configuration can be
represented using O(s(n)) + O(log s(n)) + O(1) = O(s(n)) bits. This means that the total
number of configurations is at most 2O(s(n)). The halting computation of M on input x is
a sequence of configurations which must be all different (since otherwise the machine would
enter an infinite loop). Therefore, any halting computation is ≤ 2O(s(n)). �

Theorem 16.8. QBF is PSPACE-complete.

SAT is like QBF with only existential quantifiers, so this problem is clearly NP-hard.

Proof. Suppose that L ∈ PSPACE. Then there is a machine M that decides L using space
≤ s(n) for polynomial s.

Given input x, we want to determine if there is a “path” of length ≤ L := 2O(s(n)) from
the starting configuration cSTART to an accepting configuration cACC.

We can draw a graph with configurations as nodes and transitions as edges, and so that
each node has out-degree 1. We want to say that

∃cACC[there is a path of length ≤ L from cSTART to cACC and cACC is accepting].

We can also write that ∃cACC∃c such that there is a path of length ≤ L/2 from cS to c and a
path of length ≤ L/2 from c to cACC where cACC is accepting. This process can be iterated.

This isn’t quite what we want. At the end, this formula will be enormous. At each
step, we halve the length, but we more than double the size of the formula. We only used
existential quantifiers, and we should also use the power of universal quantifiers to compress
this formula. Note that we are checking two conditions that look very similar to find paths
of length ≤ L/2, and we can collapse these with a universal quantifier.

Our formula is now: ∃cACC∃c∀(a, b) ∈ {(cSTART, c), (c, cACC)} [there is a path of length
≤ L/2 from a to b and cACC is accepting]. We can also rephrase part of this condition as
(a = cSTART ∧ b = c) ∨ (a = c ∧ b = cACC).

Consider the next level of the recursion to see how this works. Then we have the formula
∃cACC∃c1∀(a1, b1)∃c2∀(a2, b2) [there is a path of length ≤ L/4 from a2 to b2 ∧ cACC is accept-
ing ∧((a1 = cS ∧ b1 = c1)∨ (a1 = c1 ∧ b1 = cA))∧ ((a2 = a1 ∧ b2 = c2)∨ (a2 = c2 ∧ b2 = c1))].

45

Here, the number of steps in the construction is log2 L = log2 2O(s(n)) = O(s(n)). Each
step adds variables corresponding to 3 configurations and Boolean conditions defined by a
formula of size O(s(n)). The total size of the formula is therefore O(s2(n)). �

Remark. Other games that can be played on a board of size n can also be shown to
be PSPACE-complete. The situation with chess is a bit more complicated. If we add a
restriction on the number of moves before the game is called a draw, then it is PSPACE-
complete. Otherwise, it is actually EXP-complete.

Definition 16.9. NPSPACE is the languages L that are decidable by a non-deterministic
TM that uses ≤ p(n) space with p polynomial.

This class is never really talked about.

Theorem 16.10 (Savitch). PSPACE = NPSPACE.
More precisely, if L is decidable in non-deterministic space s(n) then it is decidable in

deterministic space O(s(n)2).

Proof. Suppose that L ∈ NPSPACE and M is a non-deterministic Turing machine that
decides L and uses ≤ s(n) space with s polynomial.

Given some input x, we consider all configurations of machine M on input x. We have
the same bound on the number of configurations: 2O(s(n)). Think of this as a graph G, with
configurations as nodes. Now each node can have multiple out-edges. Make an extra vertex
cA, and make all accept states have an edge to there (to make there be only one accepting
configuration). We wish to determine if there is a path in G from cSTART to cA of length
≤ ` ≤ 2O(s(n)). Call this procedure Reach(cSTART, cA, `).

Now, we use the same sort of recursion as when we considered QBF. Here is the procedure
to compute Reach(a, b, `): If ` ≥ 2, then for each configuration c, let t1 = Reach(a, c, `/2)
and t2 = Reach(c, b, `/2). If t1 ∧ t2 then halt and accept. Else, reject. If ` = 1, accept if and
only if there is a one-step computation from a to b.

What is the space complexity of this procedure? Again, space can be reused. So s(`) =
s(`/2) + p(n) = (log `)p(n). Note that log ` is polynomial. �

17. 3/8

Today, we will talk more about the theory of memory-bounded algorithms. PSPACE
includes many non-practical algorithms, and today we will discuss the class L, which roughly
are algorithms that use no data structures, and the class NL, which roughly are problems
solvable by depth first search.

We will show that L ⊆ NL ⊆ P. We will also consider NL-complete problems.
If the input has length n, then you might need space n just to read the input. But some

very space-efficient algorithms do not need to do this; for example, an algorithm to determine
if a bit string has more zeros than ones.

To capture space-complexity more accurately, we talk about sublinear space complexity.
Suppose we have a Turing machine M . One tape just contains the input and is read only.
The other tape works the way a tape in a usual Turing machine does, and has both read
and write access. In this case, our space complexity will be the number of cells of the work
tape that are being used.

Definition 17.1. L is the class of languages solvable with O(log n) bits of space.
46

It is still true that if a machine M decides a language using space ≤ s(n) then it runs in
time O(n · 2O(s(n))) = O(2O(s(n))+logn). Therefore, if a machine uses O(log n) space, then it
runs in polynomial time. This means that L ⊆ P.

Definition 17.2. NL are the languages that can be solved by a non-deterministic Turing
machine that uses O(log n) space.

This is not a particularly implementable model of computation, but it is a useful way to
classify problems.

Example 17.3. s-t connectivity is in NL.
The input is a directed graph G = (V,E) and s, t ∈ V . The goal is to determine if there

is a directed path from s to t.
In fact, we claim that STCONN ∈ NL. To see this consider the following non-deterministic

machine.
The input is G = (V,E) and s, t. It computes n := |V | and initializes a pointer p := s.

For i from 1 to n:
Let q be a nondeterministic choice of a neighbor of p.
If q = t, halt and accept.
Otherwise, let p = q.

Reject.

In terms of memory, this is using a constant number of variables, each using O(log n) bits.
This shows that s-t connectivity is in NL. It turns out that other problems using depth first
search (such as cycle finding or strongly connected components) also have NL algorithms.

Note that depth first search takes O(n) space if we do not allow non-determinism. Here,
using non-determinism allows us to gain something.

Recall Savitch’s theorem 16.10 from last time.

Theorem 17.4 (Savitch). If A is a language solvable by a space s(n) non-deterministic
machine (s(n) ≥ log n) then A is also solvable by a deterministic Turing machine that uses
space O(s(n)2).

This shows that STCONN can be decided using O((log n)2) bits of memory. So why do
we use depth first search, using linear memory? The problem is that we might end up using
nO(logn) time. In fact, this is infeasible to do. We don’t know if there is a polynomial time
algorithm that uses much less than linear space.

We will show that STCONN is NL-complete. To show this, we can only use reductions
using log space. But reductions convert problems into problems. How are we going to write
the input? To do this, using a three-tape machine. This has a read-only input tape and a
write-only input tape, and a work tape that has read and write access. The space consumed
is measured by the work tape.

Equivalently, for s ≥ log n, f is computable using space O(s) if the value of the ith bit of
f(x) is decidable using space O(s) given x and i.

Definition 17.5. A ≤log B if there is a function f computable in O(log n) space such that
x ∈ A if and only if f(x) ∈ B.

Given x, we want to compute f(x) and send it to the machine for B. The problem is that
there’s no space to store f(x). Think of this as passing f(x) directly to B; suppose that f(x)

47

produces output one bit at a time, and B takes input one bit at a time. Then interleave
computing f and running a machine for B. But log space machines can rewind, so f isn’t
always computed one bit at a time. We need to do something more complicated.

Simulate B, keeping a pointer to the position of the bit of f(x) that the machine wants
to read. If B wants to read a particular bit on f(x), run f(x) until we have computed that
bit. Then run the machine for B again until it wants to read another bit. At that time,
update the pointer, interrupt B, and compute f until we have that bit. In the worst case,
the running time is the product of that of f and B, but we only need O(log n) bits. In
general, if the machines for f and B take s1(n) and s2(n) bits respectively, the total space
usage is O(log n) + s1(n) + s2(n).

Given this discussion, we have

Fact 17.6.

(1) If A ≤log B and B ∈ L then A ∈ L.
(2) If A ≤log B and B ≤log C then A ≤log C.

This means that if A is NL-complete then A ∈ L if and only if L = NL. Also, if A is
NL-complete and B ∈ NL, then A ≤log B implies that B is NL-complete.

Proposition 17.7. STCONN is NL-complete.

Proof. Suppose that A ∈ NL. Let M be a nondeterministic Turing machine that decides A
and uses O(log n) space. On input x, consider all configurations on M on input x, which is
≤ O(n · 2O(s(n))) = nO(1) where n = |x|. Construct a graph with vertices as configurations,
and with an extra vertex t. The edges are (c, c′) if M goes in one step from c to c′. Also,
there is (cACC, t) if cACC is accepting. Now determine if it is possible to find a path in the
graph from s = cSTART to t; this translates A into a problem about s-t connectivity. �

This also tells us that NL ⊆ P because we can take any language in NL, find a polynomial
time reduction to STCONN, and then run depth-first search.

We do not know if NP = coNP, and we suspect that the answer is no. This is because
problems in coNP seem hard to verify. However, we know that NL = coNL. There is a clear
explanation in Sipser’s book.

A recent development from 2005 is that undirected s-t connectivity is in L. This is space-
efficient and polynomial time, but the polynomial is very big, so unfortunately this is not
practical, but it is still an interesting result.

18. 3/13

Today’s topic is randomized algorithms.

Example 18.1. Suppose M1 and M2 are n × n matrices. Normally, matrix multiplication
takes time O(n3), with O(n2.38) using clever methods. Here is a O(n2) randomized algorithm
for checking multiplication. Pick a 0-1 bit vector r at random. Test if M1M2r = Nr. If
M1M2 = N , then Pr[M1M2r = Nr] = 1. Otherwise, Pr[M1M2r = Nr] ≤ 1

2
. This is because

we are actually looking at Pr[Mr = 0] where M = M1M2 − r, and for any row v of M , we
have Pr[Mr = 0] ≤ Pr[〈v, r〉 = 0] = Pr[

∑
i viri = 0] ≤ Pr[ri = −

∑
j 6=i

vjrj
vi

] ≤ 1
2
.

If we pick 300 random vectors and test them all, what is the probability of incorrect
output? This is 1/2300 because these are independent random trials. This is a negligible
probability.

48

Here is another problem:

Example 18.2. Let p(x) be a polynomial p(x) = a0 + a1x+ a2x
2 + · · ·+ adx

d.
Suppose p is hidden in a black box, and we can only see the inputs and outputs. How can

we determine if p is identically zero? Simply evaluate p on d + 1 distinct values! Non-zero
degree d polynomials have ≤ d roots. The zero polynomial has infinitely many roots.

What if p(x1, . . . , xn) is an multivariate polynomial over Z? Can we determine if p is
identically zero? If p(x1, . . . , xn) is a product of m polynomials, each of which has t terms,
expanding out the whole thing could take tm operations. We can try random values for the
variables.

Theorem 18.3 (Schwartz-Zippel). Let p(x1, . . . , xm) be a nonzero polynomial on the vari-
ables x1, x2, . . . , xm, where each variable has degree at most d in p. Let F be any subset of
integers. If a1, . . . , am are selected randomly from R, then: Pr[p(a1, . . . , am) = 0] ≤ md

|F | .

Proof. This is by induction on m. In the base case, when m = 1, we have Pr[p(a1) = 0] ≤
d/|F | because nonzero polynomials of degree d have at most d roots, so at most d elements
in F make p zero.

In the inductive step, assume the inequality is true for m − 1 and prove it is true for m.
We’ll factor out the last variable xm. Write p = p0 + xmp1 + x2

mp2 + · · · + xdmpd where xm
does not occur in any pi(x1, . . . , xm−1). If p(a1, . . . , am) = 0, there are only two possibilities:

(1) For all i, pi(a1, . . . , am−1) = 0
(2) Some pi(a1, . . . , am−1) 6= 0, and am is a root of the univariate degree d polynomial on

xm that results from evaluating p0, . . . , pd on (a1, . . . , am−1).

Note that Pr[(1)] ≤ (m−1)d
|F | and Pr[(2)] ≤ d

|F | . Therefore, the probability that we want is

≤ (m−1)d
|F | + d

|F | = md
|F | . �

Why do we study probabilistic algorithms?

(1) They can be much simpler than deterministic algorithms.
(2) They can be more efficient than deterministic algorithms.
(3) Does randomness make problem much easier to solve? We don’t know. The conjec-

ture is that it won’t help too much; a deterministic algorithm exists that runs only
polynomially slower.

Definition 18.4. A probabilistic Turing machine M is a non-deterministic Turing machine
where each non-deterministic step is called a coin flip and each non-deterministic step has
only two legal next moves (heads or tails).

The probability of branch b is Pr[b] = 2−k where k is the number of coin flips that occur on
branch b. We says that Pr[M accepts w] is the sum of Pr[b] over all accepting computation
histories of M on w.

Definition 18.5. M recognizes language A with error ε if for all strings w, w ∈ A implies
that Pr[M accepts w] ≥ 1− ε and w /∈ A implies that Pr[M doesn’t accept w] ≥ 1− ε.

Theorem 18.6. Let ε be a constant, 0 < ε < 1
2

and let p(n) be a polynomial. If M1 has
error ε and runs in time t(n), then there is an equivalent machine M2 such that M2 has
error 2−p(n) and runs in time O(p(n)t(n)) time.

49

Proof Idea. M2 runs M1 for O(p(n)) independent random trials and records the answer of
M1 each time, and then returns the most common answer (accept or reject). �

Definition 18.7.

BPP = {L | L is recognized by a probabilistic polynomial-time TM with error at most 1/3}.

The 1/3 is an arbitrary choice of number < 1/2; once the error is < 1/2, we can apply
error reduction.

Definition 18.8. An arithmetic formula is like a Boolean formula, except it has + and ×
instead of OR and AND.

ZERO-POLY = {p : p is an arithmetic formula that is identically zero}.

Theorem 18.9. ZERO-POLY ∈ BPP.

Think of this as polynomial identity testing.

Proof Idea. Suppose |p| = n. Then p has ≤ n variables, and the degree of p is O(n). Assign
each variable xi a large random integer value from the set {1, . . . , n3}. Evaluate the formula
on this assignment. Schwartz-Zippel 18.3 implies that this works! �

Is BPP ⊆ NP? Nobody knows. Is BPP ⊆ PSPACE? Yes! Run through all possible
sequences of coin flips one at a time (depth-first search through the computation tree), and
count up the branches that accept.

Definition 18.10. A language A is in RP (randomized P) if there is a non-deterministic
polynomial-time Turing machine M such that for all strings x, we have that x /∈ A implies
that Pr[M(x) accepts] = 0, and x ∈ A implies that Pr[M(x) accepts] > 2/3.

Theorem 18.11. Language A is in RP if and only if for all k there exists a probabilistic
polynomial time Turing machine such that x /∈ A implies that M(x) rejects with probability

1, and x ∈ A implies that M(x) accepts with probability at least 1− 2−|x|
k
.

Definition 18.12.

NONZERO-POLY = {p | p is an arithmetic formula that is not identically zero}.

Theorem 18.13. NONZERO-POLY ∈ RP.

Note that RP ⊆ NP and RP ⊆ BPP.
There is a widespread belief that BPP = P, but we are far from showing that. Maybe

BPP = EXP? That would be strange, but we cannot prove that it is not true.

19. 3/15

Today we will talk about security. Usually, we cannot prove security unconditionally; it’s
about as hard as P=NP. We want to show that no efficient algorithm can make a successful
attack. The proof of security will show that any attack is intractible, via a reduction. Note
that here, we want to consider average case analyses instead of worst case analyses.

Today, we will discuss:

• zero-knowledge protocols
• identification protocols

50

• zero knowledge protocols for quadratic reciprocity
• identification protocol based on factorization.

Roughly, we’ll see some of the main features of cryptography. Some definitions may seem
paradoxical or impossible, but they can actually be realized through some clever ideas.

We begin with zero-knowledge proofs. Someone wishes to convince someone else that a
statement is true without communicating any of the details of the proof. It turns out that
any NP-type statement has zero-knowledge protocols. This may be complicated, but the
case of quadratic reciprocity is simple.

Consider identification protocols. Say we have some websites, e.g. Facebook, Amazon,
Wordpress. Each site knows my username and password. When we want to buy stuff on
Amazon or check out pictures on Facebook, we want to log in to one of these sites. There
are many issues. If I send my password in the clear, anyone will be able to see my password
and steal it. So we want network traffic to be included. Or someone could hack into Amazon
and steal my password, which is why it should be hashed. Another issue is that we reuse
passwords. If I give my password to another site, they could use it to log into my other
websites.

Instead, we have a secret key that we keep to ourselves, and a public key that everyone
knows. To set up an account, I just give them my public key. This is designed so that
even if network traffic is public, we don’t leak any information. The point is that given my
public key, an attacker cannot do anything. This doesn’t protect against a man-in-the-middle
attack, however.

The point is that we have some information, like a solution to some NP problem, and we
want to use this for identification.

First, we describe quadratic reciprocity. Suppose we have some big N = pq where p and
q are prime. Our assumption is that it is computationally hard to find p and q given N .
(Here, p and q are big, around 1000 bits.)

Definition 19.1. Zn = {0, . . . , n− 1} with addition mod n.
Z∗n = {x ∈ Zn : gcd(x, n) = 1} with multiplication mod n.
x is a quadratic residue if there is a square root r such that r2 ≡ x mod n.

Note that |Z∗N | = (p− 1)(q− 1) ≈ N − 2
√
N . So it is easy to find random elements in Z∗N .

Example 19.2. Consider Z∗15 = {1, 2, 4, 7, 8, 11, 13, 14}. To find the quadratic residues,
square every element to see that they are 1 and 4, and each has four square roots.

It turns out that when N = pq for p, q ≥ 3, there are (p−1)(q−1)
4

quadratic residues in Z∗N ,
each with four square roots. This can be shown using the Chinese Remainder Theorem. It is
believed that determining if an element is a quadratic residue is hard. But given a quadratic
residue, then finding square roots is as hard as factoring.

Why? Four square roots means that they come in two pairs. Suppose x is a quadratic
residue, and a and b are nontrivially different square roots: a 6≡ b mod N , a 6≡ −b mod N ,
x ≡ a2 ≡ b2 mod N . It turns out that given a and b we can factor N . This is because we
have (a+ b)(a− b) ≡ a2 − b2 ≡ 0 mod N , but a+ b, a− b 6= 0. So one of these is a multiple
of p and the other is a multiple of q. So computing gcd(a+ b,N) and gcd(a− b,N) gives p
and q. Assuming that factoring is hard, finding nontrivially different square roots is just as
hard.

51

Suppose we had a square root algorithm A. Then we can find nontrivially different square
roots. Pick a random element a and run A on a2 mod N . If A finds b where b 6≡ ±a mod N ,
use a and b to factor N . Otherwise, repeat. How often will this find different square roots?
Just think about it – it should happen 50% of the time. For any value of a2, there are two
values of a where we are happy and two where we are not. So we have a reduction. Having
a square root algorithm implies having a factoring algorithm.

Here is a zero-knowledge protocol. Suppose we have a user, who will be called the prover.
We also have a server, or verifier. The prover knows p and q. The value of N = pq is public.

For this protocol, the server sends us a quadratic residue r2 mod N . The user wants
to prove that it knows a square root of the first message while giving away no additional
information; in particular, we should not give away the value of square root. This should be
convincing that we are who we claim to be, since nobody else knows p and q. Our identity
is defined as the person who knows how to factor N .

Now, we can state the protocol. There is a prover and a verifier. Everyone knows x and
the prover knows some square root r of x, e.g. x ≡ r2 mod N . Then the prover picks a
random a ∈ Z∗N , and sends y = a2x mod N to the verifier. The verifier sends a random bit
b ∈ {0, 1}. The prover then responds with z = a mod N if b = 0, or z = ar mod N if b = 1.
The verifier then checks that z2x = y mod N if b = 0, and z2 = y mod N if b = 1. This is
repeated some number of times, since it tells us something useful with probability 1/2.

If x is a quadratic residue and the prover and verifier follow the protocol, then the verifier
accepts with probability 1. If x is not a quadratic residue, then no matter what the prover
does, the verifier accepts with probability ≤ 1/2.

To see this, suppose that x is not a quadratic residue. Then there are two possibilities:
(1): y is not a quadratic residue. (0): yx−1 is not a quadratic residue. The case that y and
yx−1 are both quadratic residues is impossible, because it means that we can write y = a2

and yx−1 = b2, so then x = y(b−1)2 = (ab−1)2 is a quadratic residue. In case (1), e.g when
b = 1, the prover cannot answer. This happens with probability 1/2.

So this convinces someone that x is a quadratic residue. Why is this zero-knowledge?
Someone watching this protocol would see y, a bit b, and then either

√
y or

√
y/x. If you

show this to someone else, it is not really convincing at all, because you could have cooked
up such an example yourself, by picking a number and squaring it and possibly multiplying
by x.

Definition 19.3. A protocol is (honest verifier) zero knowledge if there an efficient random-
ized simulator S that on input x outputs a transcript of an interaction between the prover
and the verifier that has same distribution as a real interaction.

Here’s the simulator for the protocol above: On input x, pick a random bit b ∈ {0, 1}. If
b = 1, pick a random z and output z2, 0, z; if b = 0, pick a random z and output z2x, 1, z.

This assumes that the verifier is following the protocol. We would like that even if the
other party deviates from the protocol, it still would not learn anything. So here’s the full
definition of zero-knowledge:

Definition 19.4. A protocol is zero-knowledge if for every verifier algorithm V ′ there is
a simulator SV ′ such that SV ′(x) has the same distribution as the interaction between the
prover and V ′ on input x.

52

Let’s see that our protocol still fits this definition. Given V ′, here is our simulator SV ′ :
On input x, pick g = 0 or g = 1. If g = 1, pick a random z, set y = z2. If V ′ given y asks
b = 0, then this fails. Else, output y, 1, z. If g = 0, pick a random z, set y = z2x. If V ′ given
y asks b = 1, then this fails. Else, output y, 0, z.

So now we have a zero-knowledge proof that a given integer is a quadratic residue. In
fact, this is also a proof of knowledge: proof that you know a square root. This is what is
needed in an identification protocol.

Definition 19.5. A protocol for a problem in NP is a proof of knowledge with soundness
p if there is an efficient randomized algorithm E (called the knowledge extractor) such that
for every prover algorithm P ′ and input x, if P ′ makes the verifier accept with probability
> p on x then E(x, P ′) finds a witness for x with probability Ω(p).

Then anyone who can run the protocol must actually know a square root.
Here’s our knowledge extractor: Consider some P ′ and x makes the verifier accept with

probability > 51%. We run the protocol. This means that there is some probability p > 2%
of picking y so that the prover is able to answer both challenges. So our algorithm is the
run the first round of the protocol, and continue with both b = 0 and b = 1. Then there
is a certain y such that we know z1 so that z2

1 = y and z0 so that z2
0 = yx−1. But then

x = y(z−1
0)2, so x = (z1z

−1
0)2, so we have a square root of x. So doing this 50 times on

average, we will have a square root of x. So we have a protocol that is both zero-knowledge
and a proof of knowledge. This is now a totally secure identification scheme.

E-mail address: moorxu@stanford.edu

53

	1. 1/10
	2. 1/12
	3. 1/17
	4. 1/19
	5. 1/24
	6. 1/26
	7. 1/31
	8. 2/2
	9. 2/7
	10. 2/9
	11. 2/16
	12. 2/21
	13. 2/23
	14. 2/28
	15. 3/1
	16. 3/6
	17. 3/8
	18. 3/13
	19. 3/15

