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Background: Partitions

I A partition λ of a positive integer n is a nonincreasing
sequence (λ1, λ2, . . . , λm) of positive integers whose sum is n.
Each λi is called a part of λ.

I A partition into distinct parts is a partition whose parts are all
distinct.

I For instance, (5, 3, 1, 1) is a partition of 10, and (5, 3, 2) is a
partition of 10 into distinct parts.

I p(n) is the number of partitions of n.

I Q(n) is the number of partitions of n into distinct parts.

I Neither p(n) nor Q(n) is known to have an elegant closed
formula.
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Background: Partitions
I Ramanujan discovered the famous congruence identities

p(5n + 4) ≡ 0 (mod 5)

p(7n + 5) ≡ 0 (mod 7)

p(11n + 6) ≡ 0 (mod 11)

I The generating function for p(n):

∞∑
n=0

p(n)qn =
1

1− q

1

1− q2

1

1− q3
· · ·

I Define

(a; q)∞ = (1− a)(1− aq)(1− aq2)(1− aq3) · · ·
(a; q)n = (1− a)(1− aq) · · · (1− aqn−1).

Then
∑

p(n)qn = 1
(q;q)∞

.
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Principle #1:

Behind every good partition identity
lies a q-series identity

waiting to be discovered!
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Background: p(5n + 4) ≡ 0 (mod 5)

I The generating function for p(n) can be used to show

∞∑
n=0

p(5n + 4)qn = 5
(q5; q5)5

∞
(q; q)6

∞
.

I The generating function for Q(n),∑
Q(n)qn = (1 + q)(1 + q2)(1 + q3) · · · = (−q; q)∞,

can be used to show that Q(n) is nearly always divisible by 4.

I Do the most elementary proofs of these facts require the use
of generating functions and q-series manipulation?
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Background: Dyson’s Rank

I Freeman Dyson conjectured that there is a combinatorial
invariant that sorts the partitions of 5n + 4 into 5 equal-sized
groups.

I He defined the rank of a partition λ = (λ1, . . . , λm) to be
λ1 −m. For example, the rank of the partition (5, 3, 1, 1) is
5− 4 = 1.

I Atkin and Swinnerton-Dyer proved that the rank taken modulo
5 sorts the partitions of 5n + 4 into 5 equal-sized groups!

I M. showed that Dyson’s rank, taken modulo 4, sorts the
partitions of n having distinct parts into four equal sized
groups for nearly all positive integers n.
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Background: Q(n) and G (z ; q)

I We now invoke Principle #1: Behind every partition identity
is a q-series identity waiting to be discovered!

I Let Q(n, r) denote the number of partitions of n into distinct
parts having rank r , and define

G (z ; q) =
∑
n,r

Q(n, r)z r qn.

I One can show that

G (z ; q) = 1 +
∞∑

s=1

qs(s+1)/2

(1− zq)(1− zq2) · · · (1− zqs)

for z , q ∈ C with |z | ≤ 1, |q| < 1.
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Background: G (±i ; q)

I The combinatorial result involving Dyson’s rank modulo 4 can
be used to show that

qG (i ; q24) =
∞∑

k=0

ikq(6k+1)2 +
∞∑

k=1

ik−1q(6k−1)2

and

qG (−i ; q24) =
∞∑

k=0

(−i)kq(6k+1)2 +
∞∑

k=1

(−i)k−1q(6k−1)2 .

I Note that the coefficients are roots of unity and are 0
whenever the exponent of q is not a perfect square. Such
functions are known as false theta functions.

I Resemble Ramanujan’s mock theta functions, which have
recently been linked to the theory of automorphic forms.
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Background: Modular Forms

I Let Γ be a subgroup of SL2(Z). A modular form of weight
k ∈ 1

2Z with respect to Γ is a meromorphic function

f : H→ C such that for any

(
a b
c d

)
∈ Γ,

f

(
az + b

cz + d

)
= ε(a, b, c , d)(cz + d)k f (z),

where |ε(a, b, c , d)| = 1.

I If we define q = e2πiτ , then

η(τ) := q1/24(q; q)∞

is a modular form of weight 1/2. Thus q(q; q)24
∞ is the Fourier

expansion of a modular form of weight 12.
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Background: Maass forms

I Let Γ be a subgroup of Γ0(4). A harmonic weak Maass form
of weight k is a continuous modular form of weight 2− k with
multiplier system

ε(a, b, c , d) = χ(d)
( c

d

)2k
ε−2k
d ,

where χ is a Dirichlet character of order 4 and

εd =

{
1 d ≡ 1 (mod 4)

i d ≡ 3 (mod 4)
, that is annihilated by the weight-k

hyperbolic Laplacian operator

∆k = −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
and has at most linear exponential growth at the cusps of Γ.



Background: Maass forms

I Every harmonic weak Maass form of weight k can be
decomposed as a sum of a holomorphic function (called its
“holomorphic part”) and another function (called its
“non-holomorphic part”).

[WARNING: Do not try this at home.]

I Example: Let P(n, r) denote the number of partitions of n
having rank r , and define R(z ; q) =

∑
n,r P(n, r)z r qn. Then

R(z ; q) = 1 +
∞∑

n=1

qn2∏n
k=1(1− zqk)(1− z−1qk)

.

I Bringmann, Ono: qR(i ; q24) is the holomorphic part of a
harmonic weak Maass form.

I R(i ; q−1) = R(−i ; q−1) = 1−i
2 G (i ; q) + 1+i

2 G (−i ; q). Thus
the behaviour of G (±i , q) gives the behavior of R(±i , q)
outside the unit disk! This also relates G (±i , q) to
automorphic forms.
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What about other roots of unity?

I Define the series

D(ω; q) = (1 + ω)G (ω; q) + (1− ω)G (−ω; q).

I For roots of unity ζ 6= 1, the following is a weight 0 modular
form:

η(ζ; τ) = q
1
12 (ζq; q)∞(ζ−1q; q)∞

Theorem (M., Ono)

We have that

q
1
12 · D(ζ; q)D(ζ−1; q) = 4 · η(2τ)4

η(τ)2η(ζ2; 2τ)

is a weight 1 modular form for roots of unity ζ 6= ±1.
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G (ω; 1/q) for roots of unity ω

I We have seen that a linear combination of G (±i ; 1/q) is equal
to R(i ; q). What happens outside the unit disk for other roots
of unity ω?

I Define Ĝ (ω; q) = G (ω; 1/q). Formal manipulation yields

Ĝ (ω; q) =
∑
n≥0

(−ω−1)n

(ω−1q; q)n
.

I This is not a well-defined q-series, but we can consider the

partial sums Ĝt(ω; q) =
∑t

n=0
(−ω−1)n

(ω−1q;q)n
.
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∑t

n=0
(−ω−1)n

(ω−1q;q)n
.



G (ω; 1/q) for roots of unity ω

I We have seen that a linear combination of G (±i ; 1/q) is equal
to R(i ; q). What happens outside the unit disk for other roots
of unity ω?
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The “difference of limits” theorem

I If −ω is a primitive mth root of unity, then the sequence
formed by taking every mth term of the sequence of partial
sums Ĝ1(ω; q), Ĝ2(ω; q), . . . converges to a well-defined
q-series!

Theorem (M., Ono)

Suppose that −ω 6= 1 is an mth primitive root of unity. If
1 ≤ r ≤ m, then limn→∞ Ĝmn+r (ω; q) is a well defined q-series and
satisfies

lim
n→∞

Ĝmn+r (ω; q) = lim
n→∞

Ĝmn(ω; q) +
(−ω−1)r − 1

ω + 1

1

(ω−1q; q)∞
.
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Example: The case −ω = −1

Ĝ1(1; q) = −q − q2 − q3 − q4 − q5 − q6 − q7 − q8 − · · ·
Ĝ3(1; q) = −q − q2 − 2q3 − 2q4 − 3q5 − 4q6 − 5q7 − 6q8 − · · ·
Ĝ5(1; q) = −q − q2 − 2q3 − 2q4 − 4q5 − 5q6 − 7q7 − 9q8 − · · ·
Ĝ7(1; q) = −q − q2 − 2q3 − 2q4 − 4q5 − 5q6 − 8q7 − 10q8 − · · ·
Ĝ9(1; q) = −q − q2 − 2q3 − 2q4 − 4q5 − 5q6 − 8q7 − 10q8 − · · ·

and

Ĝ2(1; q) = 1 + q2 + q3 + 2q4 + 2q5 + 3q6 + 3q7 + 4q8 + · · ·
Ĝ4(1; q) = 1 + q2 + q3 + 3q4 + 3q5 + 5q6 + 6q7 + 9q8 + · · ·
Ĝ6(1; q) = 1 + q2 + q3 + 3q4 + 3q5 + 6q6 + 7q7 + 11q8 + · · ·
Ĝ8(1; q) = 1 + q2 + q3 + 3q4 + 3q5 + 6q6 + 7q7 + 12q8 + · · ·



Example: The case −ω = e2πi/3

Let ω = −e−2πi/3, and let ζ = e2πi/6 = 1
2 +

√
3

2 i . Then

Ĝ1(ω; q) = 1

Ĝ4(ω; q) = 1 + ζ4q2 + ζ4q3 − 2q4 + (ζ2 − 1)q5 + 2ζ2q6 + · · ·
Ĝ7(ω; q) = 1 + ζ4q2 + ζ4q3 − 2q4 − 2q5 + (ζ4 − 1)q6 + · · ·

Ĝ2(ω; q) = ζ + ζq + q2 + ζ5q3 + ζ4q4 − q5 + ζ2q6 + · · ·
Ĝ5(ω; q) = ζ + ζq + q2 + (1 + ζ5)q3 + ζ5q4 −

√
3iq5 −

√
3iq6 + · · ·

Ĝ8(ω; q) = ζ + ζq + q2 + (1 + ζ5)q3 + ζ5q4 −
√

3iq5 + · · ·

Ĝ3(ω; q) = ζ2q + ζ2q2 + ζq3 + ζq4 + q5 + q6 + · · ·
Ĝ6(ω; q) = ζ2q + ζ2q2 + ζq3 +

√
3iq4 + ζq5 + (2 +

√
3i)q6 + · · ·



Explicit formula for the case −ω = −1

Theorem (M., Ono)

If we define the sequence b(n) such that∑∞
n=0(−1)nb(n)qn =

∏∞
k=0(1 + q2k+1), then

lim
n→∞

Ĝ2n(1; q) =
1

2

( ∞∑
n=0

b(n)qn +
1

(q; q)∞

)

and

lim
n→∞

Ĝ2n+1(1; q) =
1

2

( ∞∑
n=0

b(n)qn − 1

(q; q)∞

)
.

I The proof invokes Principle #2: Behind every good q-series
identity lies a combinatorial insight waiting to be discovered!



Relating Ĝ (ω, q) to automorphic forms

I It is time to invoke Principle #3: Behind every good q-series
lies an automorphic form waiting to be discovered!

I For −ω a primitive mth root of unity, it now makes sense to
define the q-series

Ĝ (ω, q) = lim
n→∞

Ĝmn(ω; q).

I Consider a twist of the third-order mock theta function of
Ramanujan:

ψ(ω; q) :=
∑
n≥0

qn2
ωn

(q; q2)n
.

I Also define

D̂(ω; q) = (1 + ω−1)Ĝ (ω; q) + (1− ω−2)(ψ(−ω2; q)− 1).
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D̂(ω; q) = (1 + ω−1)Ĝ (ω; q) + (1− ω−2)(ψ(−ω2; q)− 1).
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Relating Ĝ (ω, q) to automorphic forms

Theorem (Folsom)

Let −ω 6= 1 be a primitive mth root of unity. Then
q−1/12D̂(ω; q)D̂(ω−1; q) is the weight 1 modular form

q−1/12D̂(ω; q)D̂(ω−1; q) =
η4(q2)η2(ω2, q)

η2(q)η3(ω2, q2)
.

I Thus G and Ĝ appear within the theory of automorphic forms!
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Recap

I We have started with a combinatorial observation about
Dyson’s rank for partitions into distinct parts, studied the
relevant q-series, related these to the theory of automorphic
forms, and related a kind of analytic continuation of the
q-series outside the unit disk to the theory of automorphic
forms.

I We have also found a formula for Ĝ (1; q) in terms of
well-known q-series using combinatorial methods.

I Challenges for the future:
I We have only computed Ĝ (ω; q) in the case −ω−1 = −1.

What about other roots of unity?
I Can more combinatorial results be obtained from the analytic

properties of G (ω; q) or Ĝ (ω; q) at other roots of unity?
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Sketch of Proof

I By the difference of limits theorem,

lim
n→∞

Ĝ2n+1(1; q)− lim
n→∞

Ĝ2n(1; q) =
−1

(q; q)∞
.

I We now wish to find the sum of the limits:

S(q) := lim
n→∞

Ĝ2n+1(1; q) + lim
n→∞

Ĝ2n(1; q).

I Want to show: S(q) =
∑∞

n=0 b(n)qn, where (−1)nb(n)
counts the number of partitions of n into distinct odd parts.
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Sketch of Proof

I Let c(t) be the coefficient of qt in S(q).

I Let Even(t) denote the number of partitions of t having an
even number of parts.

I Let Odd(t) denote the number of partitions of t having an
odd number of parts.

I Using the formula for S(q), one can show combinatorially that
c(t) = Even(t)− Odd(t).

I It now suffices to show that (−1)t(Even(t)− Odd(t)) is equal
to the number of partitions of t into distinct odd parts. We
show this in the case that t is even.



Sketch of Proof

I Let c(t) be the coefficient of qt in S(q).

I Let Even(t) denote the number of partitions of t having an
even number of parts.

I Let Odd(t) denote the number of partitions of t having an
odd number of parts.

I Using the formula for S(q), one can show combinatorially that
c(t) = Even(t)− Odd(t).

I It now suffices to show that (−1)t(Even(t)− Odd(t)) is equal
to the number of partitions of t into distinct odd parts. We
show this in the case that t is even.



Sketch of Proof

I Let c(t) be the coefficient of qt in S(q).

I Let Even(t) denote the number of partitions of t having an
even number of parts.

I Let Odd(t) denote the number of partitions of t having an
odd number of parts.

I Using the formula for S(q), one can show combinatorially that
c(t) = Even(t)− Odd(t).

I It now suffices to show that (−1)t(Even(t)− Odd(t)) is equal
to the number of partitions of t into distinct odd parts.

We
show this in the case that t is even.



Sketch of Proof

I Let c(t) be the coefficient of qt in S(q).

I Let Even(t) denote the number of partitions of t having an
even number of parts.

I Let Odd(t) denote the number of partitions of t having an
odd number of parts.

I Using the formula for S(q), one can show combinatorially that
c(t) = Even(t)− Odd(t).

I It now suffices to show that (−1)t(Even(t)− Odd(t)) is equal
to the number of partitions of t into distinct odd parts. We
show this in the case that t is even.



Sketch of Proof

I For each partition λ of n, define ϕ(λ) to be the partition
formed by performing the following operation on λ:

I If λ has distinct odd parts, do nothing.
I Otherwise, let m be the smallest odd number such that the

sum of the parts of λ of the form 2km is greater than m.
I Suppose m occurs more than once in λ. If 2m occurs an even

number of times, merge two parts of size m, and otherwise,
split a part of size 2m into two parts of size m.

I Suppose m occurs at most once, and let 2jm be the smallest
even part of this form.

I If 2jm occurs an odd number of times, split one copy of 2jm
into two copies of 2j−1m.

I If instead 2jm occurs an even number of times, merge two of
them if 2j+1m occurs an even number of times, and otherwise
split one copy of 2j+1m.

I Can show that ϕ is an involution, and maps the partitions of
n into an even number of parts and not into distinct odd parts
bijectively to those having an odd number of parts.
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Example: n = 6

(5, 1) 	

(4, 2) ↔ (4, 1, 1)

(3, 3) ↔ (6)

(3, 1, 1, 1) ↔ (3, 2, 1)

(2, 2, 1, 1) ↔ (2, 2, 2)

(1, 1, 1, 1, 1, 1) ↔ (2, 1, 1, 1, 1)

The partitions of 6 into an even number of parts are listed on the
left, and those having an odd number of parts are on the right.
The pairing is given by the involution ϕ, and we see that the
number of partitions into distinct parts is Even(6)− Odd(6) = 1.


