Modular forms arising from $Q(n)$ and Dyson's rank

Maria Monks
On collaborative work with Ken Ono Joint Mathematics Meetings 2010

Background: Partitions

- A partition λ of a positive integer n is a nonincreasing sequence $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$ of positive integers whose sum is n. Each λ_{i} is called a part of λ.

Background: Partitions

- A partition λ of a positive integer n is a nonincreasing sequence $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$ of positive integers whose sum is n. Each λ_{i} is called a part of λ.
- A partition into distinct parts is a partition whose parts are all distinct.

Background: Partitions

- A partition λ of a positive integer n is a nonincreasing sequence $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$ of positive integers whose sum is n. Each λ_{i} is called a part of λ.
- A partition into distinct parts is a partition whose parts are all distinct.
- For instance, $(5,3,1,1)$ is a partition of 10 , and $(5,3,2)$ is a partition of 10 into distinct parts.

Background: Partitions

- A partition λ of a positive integer n is a nonincreasing sequence $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$ of positive integers whose sum is n. Each λ_{i} is called a part of λ.
- A partition into distinct parts is a partition whose parts are all distinct.
- For instance, $(5,3,1,1)$ is a partition of 10 , and $(5,3,2)$ is a partition of 10 into distinct parts.
- $p(n)$ is the number of partitions of n.

Background: Partitions

- A partition λ of a positive integer n is a nonincreasing sequence $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$ of positive integers whose sum is n. Each λ_{i} is called a part of λ.
- A partition into distinct parts is a partition whose parts are all distinct.
- For instance, $(5,3,1,1)$ is a partition of 10 , and $(5,3,2)$ is a partition of 10 into distinct parts.
- $p(n)$ is the number of partitions of n.
- $Q(n)$ is the number of partitions of n into distinct parts.

Background: Partitions

- A partition λ of a positive integer n is a nonincreasing sequence $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$ of positive integers whose sum is n. Each λ_{i} is called a part of λ.
- A partition into distinct parts is a partition whose parts are all distinct.
- For instance, $(5,3,1,1)$ is a partition of 10 , and $(5,3,2)$ is a partition of 10 into distinct parts.
- $p(n)$ is the number of partitions of n.
- $Q(n)$ is the number of partitions of n into distinct parts.
- Neither $p(n)$ nor $Q(n)$ is known to have an elegant closed formula.

Background: Partitions

- Ramanujan discovered the famous congruence identities

$$
\begin{aligned}
p(5 n+4) & \equiv 0(\bmod 5) \\
p(7 n+5) & \equiv 0(\bmod 7) \\
p(11 n+6) & \equiv 0(\bmod 11)
\end{aligned}
$$

Background: Partitions

- Ramanujan discovered the famous congruence identities

$$
\begin{aligned}
p(5 n+4) & \equiv 0(\bmod 5) \\
p(7 n+5) & \equiv 0(\bmod 7) \\
p(11 n+6) & \equiv 0(\bmod 11)
\end{aligned}
$$

- The generating function for $p(n)$:

$$
\sum_{n=0}^{\infty} p(n) q^{n}=\frac{1}{1-q} \frac{1}{1-q^{2}} \frac{1}{1-q^{3}} \cdots
$$

- Define

$$
\begin{aligned}
(a ; q)_{\infty} & =(1-a)(1-a q)\left(1-a q^{2}\right)\left(1-a q^{3}\right) \cdots \\
(a ; q)_{n} & =(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right)
\end{aligned}
$$

Then $\sum p(n) q^{n}=\frac{1}{(q ; q)_{\infty}}$.

Principle \#1:

Principle \#1:

Behind every good partition identity
lies a q-series identity
waiting to be discovered!

Background: $p(5 n+4) \equiv 0(\bmod 5)$

- The generating function for $p(n)$ can be used to show

$$
\sum_{n=0}^{\infty} p(5 n+4) q^{n}=5 \frac{\left(q^{5} ; q^{5}\right)_{\infty}^{5}}{(q ; q)_{\infty}^{6}}
$$

Background: $p(5 n+4) \equiv 0(\bmod 5)$

- The generating function for $p(n)$ can be used to show

$$
\sum_{n=0}^{\infty} p(5 n+4) q^{n}=5 \frac{\left(q^{5} ; q^{5}\right)_{\infty}^{5}}{(q ; q)_{\infty}^{6}}
$$

- The generating function for $Q(n)$,

$$
\sum Q(n) q^{n}=(1+q)\left(1+q^{2}\right)\left(1+q^{3}\right) \cdots=(-q ; q)_{\infty}
$$

can be used to show that $Q(n)$ is nearly always divisible by 4 .

Background: $p(5 n+4) \equiv 0(\bmod 5)$

- The generating function for $p(n)$ can be used to show

$$
\sum_{n=0}^{\infty} p(5 n+4) q^{n}=5 \frac{\left(q^{5} ; q^{5}\right)_{\infty}^{5}}{(q ; q)_{\infty}^{6}}
$$

- The generating function for $Q(n)$,

$$
\sum Q(n) q^{n}=(1+q)\left(1+q^{2}\right)\left(1+q^{3}\right) \cdots=(-q ; q)_{\infty}
$$

can be used to show that $Q(n)$ is nearly always divisible by 4 .

- Do the most elementary proofs of these facts require the use of generating functions and q-series manipulation?

Principle \#2:

Principle \#2:

Behind every good q-series identity
lies a combinatorial insight waiting to be discovered!

Background: Dyson's Rank

- Freeman Dyson conjectured that there is a combinatorial invariant that sorts the partitions of $5 n+4$ into 5 equal-sized groups.

Background: Dyson's Rank

- Freeman Dyson conjectured that there is a combinatorial invariant that sorts the partitions of $5 n+4$ into 5 equal-sized groups.
- He defined the rank of a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ to be $\lambda_{1}-m$. For example, the rank of the partition $(5,3,1,1)$ is $5-4=1$.

Background: Dyson's Rank

- Freeman Dyson conjectured that there is a combinatorial invariant that sorts the partitions of $5 n+4$ into 5 equal-sized groups.
- He defined the rank of a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ to be $\lambda_{1}-m$. For example, the rank of the partition (5,3,1,1) is $5-4=1$.
- Atkin and Swinnerton-Dyer proved that the rank taken modulo 5 sorts the partitions of $5 n+4$ into 5 equal-sized groups!

Background: Dyson's Rank

- Freeman Dyson conjectured that there is a combinatorial invariant that sorts the partitions of $5 n+4$ into 5 equal-sized groups.
- He defined the rank of a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ to be $\lambda_{1}-m$. For example, the rank of the partition $(5,3,1,1)$ is $5-4=1$.
- Atkin and Swinnerton-Dyer proved that the rank taken modulo 5 sorts the partitions of $5 n+4$ into 5 equal-sized groups!
- M. showed that Dyson's rank, taken modulo 4, sorts the partitions of n having distinct parts into four equal sized groups for nearly all positive integers n.

Background: $Q(n)$ and $G(z ; q)$

- We now invoke Principle \#1: Behind every partition identity is a q-series identity waiting to be discovered!

Background: $Q(n)$ and $G(z ; q)$

- We now invoke Principle \#1: Behind every partition identity is a q-series identity waiting to be discovered!
- Let $Q(n, r)$ denote the number of partitions of n into distinct parts having rank r, and define

$$
G(z ; q)=\sum_{n, r} Q(n, r) z^{r} q^{n}
$$

Background: $Q(n)$ and $G(z ; q)$

- We now invoke Principle \#1: Behind every partition identity is a q-series identity waiting to be discovered!
- Let $Q(n, r)$ denote the number of partitions of n into distinct parts having rank r, and define

$$
G(z ; q)=\sum_{n, r} Q(n, r) z^{r} q^{n}
$$

- One can show that

$$
G(z ; q)=1+\sum_{s=1}^{\infty} \frac{q^{s(s+1) / 2}}{(1-z q)\left(1-z q^{2}\right) \cdots\left(1-z q^{s}\right)}
$$

for $z, q \in \mathbb{C}$ with $|z| \leq 1,|q|<1$.

Background: $G(\pm i ; q)$

- The combinatorial result involving Dyson's rank modulo 4 can be used to show that

$$
q G\left(i ; q^{24}\right)=\sum_{k=0}^{\infty} i^{k} q^{(6 k+1)^{2}}+\sum_{k=1}^{\infty} i^{k-1} q^{(6 k-1)^{2}}
$$

and

$$
q G\left(-i ; q^{24}\right)=\sum_{k=0}^{\infty}(-i)^{k} q^{(6 k+1)^{2}}+\sum_{k=1}^{\infty}(-i)^{k-1} q^{(6 k-1)^{2}}
$$

Background: $G(\pm i ; q)$

- The combinatorial result involving Dyson's rank modulo 4 can be used to show that

$$
q G\left(i ; q^{24}\right)=\sum_{k=0}^{\infty} i^{k} q^{(6 k+1)^{2}}+\sum_{k=1}^{\infty} i^{k-1} q^{(6 k-1)^{2}}
$$

and

$$
q G\left(-i ; q^{24}\right)=\sum_{k=0}^{\infty}(-i)^{k} q^{(6 k+1)^{2}}+\sum_{k=1}^{\infty}(-i)^{k-1} q^{(6 k-1)^{2}}
$$

- Note that the coefficients are roots of unity and are 0 whenever the exponent of q is not a perfect square. Such functions are known as false theta functions.

Background: $G(\pm i ; q)$

- The combinatorial result involving Dyson's rank modulo 4 can be used to show that

$$
q G\left(i ; q^{24}\right)=\sum_{k=0}^{\infty} i^{k} q^{(6 k+1)^{2}}+\sum_{k=1}^{\infty} i^{k-1} q^{(6 k-1)^{2}}
$$

and

$$
q G\left(-i ; q^{24}\right)=\sum_{k=0}^{\infty}(-i)^{k} q^{(6 k+1)^{2}}+\sum_{k=1}^{\infty}(-i)^{k-1} q^{(6 k-1)^{2}}
$$

- Note that the coefficients are roots of unity and are 0 whenever the exponent of q is not a perfect square. Such functions are known as false theta functions.
- Resemble Ramanujan's mock theta functions, which have recently been linked to the theory of automorphic forms.

Principle \#3:

Principle \#3:

Behind every good q-series
lies an automorphic form waiting to be discovered!

Background: Modular Forms

- Let Γ be a subgroup of $S L_{2}(\mathbb{Z})$. A modular form of weight $k \in \frac{1}{2} \mathbb{Z}$ with respect to Γ is a meromorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ such that for any $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$,

$$
f\left(\frac{a z+b}{c z+d}\right)=\epsilon(a, b, c, d)(c z+d)^{k} f(z)
$$

where $|\epsilon(a, b, c, d)|=1$.

Background: Modular Forms

- Let Γ be a subgroup of $S L_{2}(\mathbb{Z})$. A modular form of weight $k \in \frac{1}{2} \mathbb{Z}$ with respect to Γ is a meromorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ such that for any $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$,

$$
f\left(\frac{a z+b}{c z+d}\right)=\epsilon(a, b, c, d)(c z+d)^{k} f(z)
$$

where $|\epsilon(a, b, c, d)|=1$.

- If we define $q=e^{2 \pi i \tau}$, then

$$
\eta(\tau):=q^{1 / 24}(q ; q)_{\infty}
$$

is a modular form of weight $1 / 2$. Thus $q(q ; q)_{\infty}^{24}$ is the Fourier expansion of a modular form of weight 12 .

Background: Maass forms

- Let Γ be a subgroup of $\Gamma_{0}(4)$. A harmonic weak Maass form of weight k is a continuous modular form of weight $2-k$ with multiplier system

$$
\epsilon(a, b, c, d)=\chi(d)\left(\frac{c}{d}\right)^{2 k} \epsilon_{d}^{-2 k}
$$

where χ is a Dirichlet character of order 4 and
$\epsilon_{d}=\left\{\begin{array}{ll}1 & d \equiv 1(\bmod 4) \\ i & d \equiv 3(\bmod 4)\end{array}\right.$, that is annihilated by the weight- k hyperbolic Laplacian operator

$$
\Delta_{k}=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+i k y\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)
$$

and has at most linear exponential growth at the cusps of Γ.

Background: Maass forms

- Every harmonic weak Maass form of weight k can be decomposed as a sum of a holomorphic function (called its "holomorphic part") and another function (called its "non-holomorphic part").

Background: Maass forms

- Every harmonic weak Maass form of weight k can be decomposed as a sum of a holomorphic function (called its "holomorphic part") and another function (called its "non-holomorphic part"). [WARNING: Do not try this at home.]

Background: Maass forms

- Every harmonic weak Maass form of weight k can be decomposed as a sum of a holomorphic function (called its "holomorphic part") and another function (called its "non-holomorphic part"). [WARNING: Do not try this at home.]
- Example: Let $P(n, r)$ denote the number of partitions of n having rank r, and define $R(z ; q)=\sum_{n, r} P(n, r) z^{r} q^{n}$. Then

$$
R(z ; q)=1+\sum_{n=1}^{\infty} \frac{q^{n^{2}}}{\prod_{k=1}^{n}\left(1-z q^{k}\right)\left(1-z^{-1} q^{k}\right)}
$$

- Bringmann, Ono: $q R\left(i ; q^{24}\right)$ is the holomorphic part of a harmonic weak Maass form.

Background: Maass forms

- Every harmonic weak Maass form of weight k can be decomposed as a sum of a holomorphic function (called its "holomorphic part") and another function (called its "non-holomorphic part"). [WARNING: Do not try this at home.]
- Example: Let $P(n, r)$ denote the number of partitions of n having rank r, and define $R(z ; q)=\sum_{n, r} P(n, r) z^{r} q^{n}$. Then

$$
R(z ; q)=1+\sum_{n=1}^{\infty} \frac{q^{n^{2}}}{\prod_{k=1}^{n}\left(1-z q^{k}\right)\left(1-z^{-1} q^{k}\right)}
$$

- Bringmann, Ono: $q R\left(i ; q^{24}\right)$ is the holomorphic part of a harmonic weak Maass form.
- $R\left(i ; q^{-1}\right)=R\left(-i ; q^{-1}\right)=\frac{1-i}{2} G(i ; q)+\frac{1+i}{2} G(-i ; q)$. Thus the behaviour of $G(\pm i, q)$ gives the behavior of $R(\pm i, q)$ outside the unit disk! This also relates $G(\pm i, q)$ to automorphic forms.

What about other roots of unity?

- Define the series

$$
D(\omega ; q)=(1+\omega) G(\omega ; q)+(1-\omega) G(-\omega ; q)
$$

What about other roots of unity?

- Define the series

$$
D(\omega ; q)=(1+\omega) G(\omega ; q)+(1-\omega) G(-\omega ; q)
$$

- For roots of unity $\zeta \neq 1$, the following is a weight 0 modular form:

$$
\eta(\zeta ; \tau)=q^{\frac{1}{12}}(\zeta q ; q)_{\infty}\left(\zeta^{-1} q ; q\right)_{\infty}
$$

What about other roots of unity?

- Define the series

$$
D(\omega ; q)=(1+\omega) G(\omega ; q)+(1-\omega) G(-\omega ; q)
$$

- For roots of unity $\zeta \neq 1$, the following is a weight 0 modular form:

$$
\eta(\zeta ; \tau)=q^{\frac{1}{12}}(\zeta q ; q)_{\infty}\left(\zeta^{-1} q ; q\right)_{\infty}
$$

Theorem (M., Ono)
We have that

$$
q^{\frac{1}{12}} \cdot D(\zeta ; q) D\left(\zeta^{-1} ; q\right)=4 \cdot \frac{\eta(2 \tau)^{4}}{\eta(\tau)^{2} \eta\left(\zeta^{2} ; 2 \tau\right)}
$$

is a weight 1 modular form for roots of unity $\zeta \neq \pm 1$.

$G(\omega ; 1 / q)$ for roots of unity ω

- We have seen that a linear combination of $G(\pm i ; 1 / q)$ is equal to $R(i ; q)$. What happens outside the unit disk for other roots of unity ω ?

$G(\omega ; 1 / q)$ for roots of unity ω

- We have seen that a linear combination of $G(\pm i ; 1 / q)$ is equal to $R(i ; q)$. What happens outside the unit disk for other roots of unity ω ?
- Define $\widehat{G}(\omega ; q)=G(\omega ; 1 / q)$. Formal manipulation yields

$$
\widehat{G}(\omega ; q)=\sum_{n \geq 0} \frac{\left(-\omega^{-1}\right)^{n}}{\left(\omega^{-1} q ; q\right)_{n}}
$$

$G(\omega ; 1 / q)$ for roots of unity ω

- We have seen that a linear combination of $G(\pm i ; 1 / q)$ is equal to $R(i ; q)$. What happens outside the unit disk for other roots of unity ω ?
- Define $\widehat{G}(\omega ; q)=G(\omega ; 1 / q)$. Formal manipulation yields

$$
\widehat{G}(\omega ; q)=\sum_{n \geq 0} \frac{\left(-\omega^{-1}\right)^{n}}{\left(\omega^{-1} q ; q\right)_{n}}
$$

- This is not a well-defined q-series, but we can consider the partial sums $\widehat{G}_{t}(\omega ; q)=\sum_{n=0}^{t} \frac{\left(-\omega^{-1}\right)^{n}}{\left(\omega^{-1} q ; q\right)_{n}}$.

The "difference of limits" theorem

- If $-\omega$ is a primitive m th root of unity, then the sequence formed by taking every m th term of the sequence of partial sums $\widehat{G}_{1}(\omega ; q), \widehat{G}_{2}(\omega ; q), \ldots$ converges to a well-defined q-series!

The "difference of limits" theorem

- If $-\omega$ is a primitive m th root of unity, then the sequence formed by taking every m th term of the sequence of partial sums $\widehat{G}_{1}(\omega ; q), \widehat{G}_{2}(\omega ; q), \ldots$ converges to a well-defined q-series!

Theorem (M., Ono)

Suppose that $-\omega \neq 1$ is an mth primitive root of unity. If $1 \leq r \leq m$, then $\lim _{n \rightarrow \infty} \widehat{G}_{m n+r}(\omega ; q)$ is a well defined q-series and satisfies

$$
\lim _{n \rightarrow \infty} \widehat{G}_{m n+r}(\omega ; q)=\lim _{n \rightarrow \infty} \widehat{G}_{m n}(\omega ; q)+\frac{\left(-\omega^{-1}\right)^{r}-1}{\omega+1} \frac{1}{\left(\omega^{-1} q ; q\right)_{\infty}} .
$$

Example: The case $-\omega=-1$
$\widehat{G}_{1}(1 ; q)=-q-q^{2}-q^{3}-q^{4}-q^{5}-q^{6}-q^{7}-q^{8}-\cdots$
$\widehat{\mathrm{G}}_{3}(1 ; q)=-q-q^{2}-2 q^{3}-2 q^{4}-3 q^{5}-4 q^{6}-5 q^{7}-6 q^{8}-\cdots$
$\widehat{G}_{5}(1 ; q)=-q-q^{2}-2 q^{3}-2 q^{4}-4 q^{5}-5 q^{6}-7 q^{7}-9 q^{8}-\cdots$
$\widehat{G}_{7}(1 ; q)=-q-q^{2}-2 q^{3}-2 q^{4}-4 q^{5}-5 q^{6}-8 q^{7}-10 q^{8}-\cdots$
$\widehat{\mathrm{G}}_{9}(1 ; q)=-q-q^{2}-2 q^{3}-2 q^{4}-4 q^{5}-5 q^{6}-8 q^{7}-10 q^{8}-\cdots$
and

$$
\begin{aligned}
& \widehat{G}_{2}(1 ; q)=1+q^{2}+q^{3}+2 q^{4}+2 q^{5}+3 q^{6}+3 q^{7}+4 q^{8}+\cdots \\
& \widehat{G}_{4}(1 ; q)=1+q^{2}+q^{3}+3 q^{4}+3 q^{5}+5 q^{6}+6 q^{7}+9 q^{8}+\cdots \\
& \widehat{G}_{6}(1 ; q)=1+q^{2}+q^{3}+3 q^{4}+3 q^{5}+6 q^{6}+7 q^{7}+11 q^{8}+\cdots \\
& \widehat{G}_{8}(1 ; q)=1+q^{2}+q^{3}+3 q^{4}+3 q^{5}+6 q^{6}+7 q^{7}+12 q^{8}+\cdots
\end{aligned}
$$

Example: The case $-\omega=e^{2 \pi i / 3}$
Let $\omega=-e^{-2 \pi i / 3}$, and let $\zeta=e^{2 \pi i / 6}=\frac{1}{2}+\frac{\sqrt{3}}{2} i$. Then
$\widehat{G}_{1}(\omega ; q)=1$
$\widehat{G}_{4}(\omega ; q)=1+\zeta^{4} q^{2}+\zeta^{4} q^{3}-2 q^{4}+\left(\zeta^{2}-1\right) q^{5}+2 \zeta^{2} q^{6}+\cdots$
$\widehat{G}_{7}(\omega ; q)=1+\zeta^{4} q^{2}+\zeta^{4} q^{3}-2 q^{4}-2 q^{5}+\left(\zeta^{4}-1\right) q^{6}+\cdots$
$\widehat{G}_{2}(\omega ; q)=\zeta+\zeta q+q^{2}+\zeta^{5} q^{3}+\zeta^{4} q^{4}-q^{5}+\zeta^{2} q^{6}+\cdots$
$\widehat{G}_{5}(\omega ; q)=\zeta+\zeta q+q^{2}+\left(1+\zeta^{5}\right) q^{3}+\zeta^{5} q^{4}-\sqrt{3} i q^{5}-\sqrt{3} i q^{6}+\cdots$
$\widehat{G}_{8}(\omega ; q)=\zeta+\zeta q+q^{2}+\left(1+\zeta^{5}\right) q^{3}+\zeta^{5} q^{4}-\sqrt{3} i q^{5}+\cdots$
$\widehat{G}_{3}(\omega ; q)=\zeta^{2} q+\zeta^{2} q^{2}+\zeta q^{3}+\zeta q^{4}+q^{5}+q^{6}+\cdots$
$\widehat{G}_{6}(\omega ; q)=\zeta^{2} q+\zeta^{2} q^{2}+\zeta q^{3}+\sqrt{3} i q^{4}+\zeta q^{5}+(2+\sqrt{3} i) q^{6}+\cdots$

Explicit formula for the case $-\omega=-1$

Theorem (M., Ono)
If we define the sequence $b(n)$ such that
$\sum_{n=0}^{\infty}(-1)^{n} b(n) q^{n}=\prod_{k=0}^{\infty}\left(1+q^{2 k+1}\right)$, then

$$
\lim _{n \rightarrow \infty} \widehat{G}_{2 n}(1 ; q)=\frac{1}{2}\left(\sum_{n=0}^{\infty} b(n) q^{n}+\frac{1}{(q ; q)_{\infty}}\right)
$$

and

$$
\lim _{n \rightarrow \infty} \widehat{G}_{2 n+1}(1 ; q)=\frac{1}{2}\left(\sum_{n=0}^{\infty} b(n) q^{n}-\frac{1}{(q ; q)_{\infty}}\right) .
$$

- The proof invokes Principle \#2: Behind every good q-series identity lies a combinatorial insight waiting to be discovered!

Relating $\widehat{G}(\omega, q)$ to automorphic forms

- It is time to invoke Principle \#3: Behind every good q-series lies an automorphic form waiting to be discovered!

Relating $\widehat{G}(\omega, q)$ to automorphic forms

- It is time to invoke Principle \#3: Behind every good q-series lies an automorphic form waiting to be discovered!
- For $-\omega$ a primitive m th root of unity, it now makes sense to define the q-series

$$
\widehat{G}(\omega, q)=\lim _{n \rightarrow \infty} \widehat{G}_{m n}(\omega ; q)
$$

Relating $\widehat{G}(\omega, q)$ to automorphic forms

- It is time to invoke Principle \#3: Behind every good q-series lies an automorphic form waiting to be discovered!
- For $-\omega$ a primitive m th root of unity, it now makes sense to define the q-series

$$
\widehat{G}(\omega, q)=\lim _{n \rightarrow \infty} \widehat{G}_{m n}(\omega ; q)
$$

- Consider a twist of the third-order mock theta function of Ramanujan:

$$
\psi(\omega ; q):=\sum_{n \geq 0} \frac{q^{n^{2}} \omega^{n}}{\left(q ; q^{2}\right)_{n}}
$$

Relating $\widehat{G}(\omega, q)$ to automorphic forms

- It is time to invoke Principle \#3: Behind every good q-series lies an automorphic form waiting to be discovered!
- For $-\omega$ a primitive m th root of unity, it now makes sense to define the q-series

$$
\widehat{G}(\omega, q)=\lim _{n \rightarrow \infty} \widehat{G}_{m n}(\omega ; q)
$$

- Consider a twist of the third-order mock theta function of Ramanujan:

$$
\psi(\omega ; q):=\sum_{n \geq 0} \frac{q^{n^{2}} \omega^{n}}{\left(q ; q^{2}\right)_{n}}
$$

- Also define

$$
\widehat{D}(\omega ; q)=\left(1+\omega^{-1}\right) \widehat{G}(\omega ; q)+\left(1-\omega^{-2}\right)\left(\psi\left(-\omega^{2} ; q\right)-1\right)
$$

Relating $\widehat{G}(\omega, q)$ to automorphic forms

Theorem (Folsom)
Let $-\omega \neq 1$ be a primitive mth root of unity. Then $q^{-1 / 12} \widehat{D}(\omega ; q) \widehat{D}\left(\omega^{-1} ; q\right)$ is the weight 1 modular form

$$
q^{-1 / 12} \widehat{D}(\omega ; q) \widehat{D}\left(\omega^{-1} ; q\right)=\frac{\eta^{4}\left(q^{2}\right) \eta^{2}\left(\omega^{2}, q\right)}{\eta^{2}(q) \eta^{3}\left(\omega^{2}, q^{2}\right)}
$$

Relating $\widehat{G}(\omega, q)$ to automorphic forms

Theorem (Folsom)
Let $-\omega \neq 1$ be a primitive mth root of unity. Then $q^{-1 / 12} \widehat{D}(\omega ; q) \widehat{D}\left(\omega^{-1} ; q\right)$ is the weight 1 modular form

$$
q^{-1 / 12} \widehat{D}(\omega ; q) \widehat{D}\left(\omega^{-1} ; q\right)=\frac{\eta^{4}\left(q^{2}\right) \eta^{2}\left(\omega^{2}, q\right)}{\eta^{2}(q) \eta^{3}\left(\omega^{2}, q^{2}\right)} .
$$

- Thus G and \widehat{G} appear within the theory of automorphic forms!

Recap

- We have started with a combinatorial observation about Dyson's rank for partitions into distinct parts, studied the relevant q-series, related these to the theory of automorphic forms, and related a kind of analytic continuation of the q-series outside the unit disk to the theory of automorphic forms.

Recap

- We have started with a combinatorial observation about Dyson's rank for partitions into distinct parts, studied the relevant q-series, related these to the theory of automorphic forms, and related a kind of analytic continuation of the q-series outside the unit disk to the theory of automorphic forms.
- We have also found a formula for $\widehat{G}(1 ; q)$ in terms of well-known q-series using combinatorial methods.

Recap

- We have started with a combinatorial observation about Dyson's rank for partitions into distinct parts, studied the relevant q-series, related these to the theory of automorphic forms, and related a kind of analytic continuation of the q-series outside the unit disk to the theory of automorphic forms.
- We have also found a formula for $\widehat{G}(1 ; q)$ in terms of well-known q-series using combinatorial methods.
- Challenges for the future:
- We have only computed $\widehat{G}(\omega ; q)$ in the case $-\omega^{-1}=-1$. What about other roots of unity?
- Can more combinatorial results be obtained from the analytic properties of $G(\omega ; q)$ or $\widehat{G}(\omega ; q)$ at other roots of unity?

Sketch of Proof

- By the difference of limits theorem,

$$
\lim _{n \rightarrow \infty} \widehat{G}_{2 n+1}(1 ; q)-\lim _{n \rightarrow \infty} \widehat{G}_{2 n}(1 ; q)=\frac{-1}{(q ; q)_{\infty}}
$$

Sketch of Proof

- By the difference of limits theorem,

$$
\lim _{n \rightarrow \infty} \widehat{G}_{2 n+1}(1 ; q)-\lim _{n \rightarrow \infty} \widehat{G}_{2 n}(1 ; q)=\frac{-1}{(q ; q)_{\infty}}
$$

- We now wish to find the sum of the limits:

$$
S(q):=\lim _{n \rightarrow \infty} \widehat{G}_{2 n+1}(1 ; q)+\lim _{n \rightarrow \infty} \widehat{G}_{2 n}(1 ; q)
$$

Sketch of Proof

- By the difference of limits theorem,

$$
\lim _{n \rightarrow \infty} \widehat{G}_{2 n+1}(1 ; q)-\lim _{n \rightarrow \infty} \widehat{G}_{2 n}(1 ; q)=\frac{-1}{(q ; q)_{\infty}}
$$

- We now wish to find the sum of the limits:

$$
S(q):=\lim _{n \rightarrow \infty} \widehat{G}_{2 n+1}(1 ; q)+\lim _{n \rightarrow \infty} \widehat{G}_{2 n}(1 ; q)
$$

- Want to show: $S(q)=\sum_{n=0}^{\infty} b(n) q^{n}$, where $(-1)^{n} b(n)$ counts the number of partitions of n into distinct odd parts.

Sketch of Proof

- Let $c(t)$ be the coefficient of q^{t} in $S(q)$.

Sketch of Proof

- Let $c(t)$ be the coefficient of q^{t} in $S(q)$.
- Let Even (t) denote the number of partitions of t having an even number of parts.
- Let $\operatorname{Odd}(t)$ denote the number of partitions of t having an odd number of parts.
- Using the formula for $S(q)$, one can show combinatorially that $c(t)=\operatorname{Even}(t)-\operatorname{Odd}(t)$.

Sketch of Proof

- Let $c(t)$ be the coefficient of q^{t} in $S(q)$.
- Let Even (t) denote the number of partitions of t having an even number of parts.
- Let $\operatorname{Odd}(t)$ denote the number of partitions of t having an odd number of parts.
- Using the formula for $S(q)$, one can show combinatorially that $c(t)=\operatorname{Even}(t)-\operatorname{Odd}(t)$.
- It now suffices to show that $(-1)^{t}(\operatorname{Even}(t)-\operatorname{Odd}(t))$ is equal to the number of partitions of t into distinct odd parts.

Sketch of Proof

- Let $c(t)$ be the coefficient of q^{t} in $S(q)$.
- Let Even (t) denote the number of partitions of t having an even number of parts.
- Let $\operatorname{Odd}(t)$ denote the number of partitions of t having an odd number of parts.
- Using the formula for $S(q)$, one can show combinatorially that $c(t)=\operatorname{Even}(t)-\operatorname{Odd}(t)$.
- It now suffices to show that $(-1)^{t}(\operatorname{Even}(t)-\operatorname{Odd}(t))$ is equal to the number of partitions of t into distinct odd parts. We show this in the case that t is even.

Sketch of Proof

- For each partition λ of n, define $\varphi(\lambda)$ to be the partition formed by performing the following operation on λ :

Sketch of Proof

- For each partition λ of n, define $\varphi(\lambda)$ to be the partition formed by performing the following operation on λ :
- If λ has distinct odd parts, do nothing.

Sketch of Proof

- For each partition λ of n, define $\varphi(\lambda)$ to be the partition formed by performing the following operation on λ :
- If λ has distinct odd parts, do nothing.
- Otherwise, let m be the smallest odd number such that the sum of the parts of λ of the form $2^{k} m$ is greater than m.

Sketch of Proof

- For each partition λ of n, define $\varphi(\lambda)$ to be the partition formed by performing the following operation on λ :
- If λ has distinct odd parts, do nothing.
- Otherwise, let m be the smallest odd number such that the sum of the parts of λ of the form $2^{k} m$ is greater than m.
- Suppose m occurs more than once in λ. If $2 m$ occurs an even number of times, merge two parts of size m, and otherwise, split a part of size $2 m$ into two parts of size m.

Sketch of Proof

- For each partition λ of n, define $\varphi(\lambda)$ to be the partition formed by performing the following operation on λ :
- If λ has distinct odd parts, do nothing.
- Otherwise, let m be the smallest odd number such that the sum of the parts of λ of the form $2^{k} m$ is greater than m.
- Suppose m occurs more than once in λ. If $2 m$ occurs an even number of times, merge two parts of size m, and otherwise, split a part of size $2 m$ into two parts of size m.
- Suppose m occurs at most once, and let $2^{j} m$ be the smallest even part of this form.
- If $2^{j} m$ occurs an odd number of times, split one copy of $2^{j} m$ into two copies of 2^{j-1} m.

Sketch of Proof

- For each partition λ of n, define $\varphi(\lambda)$ to be the partition formed by performing the following operation on λ :
- If λ has distinct odd parts, do nothing.
- Otherwise, let m be the smallest odd number such that the sum of the parts of λ of the form $2^{k} m$ is greater than m.
- Suppose m occurs more than once in λ. If $2 m$ occurs an even number of times, merge two parts of size m, and otherwise, split a part of size $2 m$ into two parts of size m.
- Suppose m occurs at most once, and let $2^{j} m$ be the smallest even part of this form.
- If $2^{j} m$ occurs an odd number of times, split one copy of $2^{j} m$ into two copies of 2^{j-1} m.
- If instead $2^{j} m$ occurs an even number of times, merge two of them if $2^{j+1} m$ occurs an even number of times, and otherwise split one copy of $2^{j+1} m$.
- Can show that φ is an involution, and maps the partitions of n into an even number of parts and not into distinct odd parts bijectively to those having an odd number of parts.

Example: $n=6$

$$
\begin{aligned}
(5,1) & \circlearrowleft \\
(4,2) & \leftrightarrow(4,1,1) \\
(3,3) & \leftrightarrow(6) \\
(3,1,1,1) & \leftrightarrow(3,2,1) \\
(2,2,1,1) & \leftrightarrow(2,2,2) \\
(1,1,1,1,1,1) & \leftrightarrow(2,1,1,1,1)
\end{aligned}
$$

The partitions of 6 into an even number of parts are listed on the left, and those having an odd number of parts are on the right. The pairing is given by the involution φ, and we see that the number of partitions into distinct parts is Even(6) - Odd(6) $=1$.

