On the distribution of arithmetic sequences in the Collatz graph

Keenan Monks, Harvard University Ken G. Monks, University of Scranton Ken M. Monks, Colorado State University Maria Monks, UC Berkeley

The 3x + 1 conjecture (Collatz conjecture)

Famous open problem stated in 1929 by Collatz

$\begin{array}{c} 9 \rightarrow 28 \emptyset 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow \\ 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \end{array}$

The 3x + 1 conjecture (Collatz conjecture)

Famous open problem stated in 1929 by Collatz

• Define
$$C(x) = \begin{cases} x/2 & x \text{ is even} \\ 3x+1 & x \text{ is odd} \end{cases}$$
.

$\begin{array}{c} 9 \rightarrow 28 \emptyset 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow \\ 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \end{array}$

The 3x + 1 conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz
- Define $C(x) = \begin{cases} x/2 & x \text{ is even} \\ 3x+1 & x \text{ is odd} \end{cases}$.
- What is the long-term behaviour of C as a discrete dynamical system?

 $\begin{array}{c} 9 \rightarrow 28 \emptyset 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow \\ 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \end{array}$

References

- Applegate, D. and Lagarias, J. C., Density Bounds for the 3x+1 Problem I. Tree-Search Method, Math. Comp. 64 (1995), pp. 411-426.
- Bernstein, D. J., A non-iterative 2-adic statement of the 3x + 1 conjecture, Proc. Amer. Math. Soc. 121 (1994), 405-408.
- Eliahou, S., The 3x + 1 problem: new lower bounds on nontrivial cycle lengths, Discrete Math. 188 (1993), 45-56.
- Hedlund, G., Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320-375.
- Hua, L. K., Introduction to Number Theory, Springer-Verlag, 1982, ISBN: 3-540-10818-1.
- Kraft, B., Monks, K., On Conjugacies of the 3x + 1 Map Induced by Continuous Endomorphisms of the Shift Dynamical System, Discrete Math. 310 (2010), 1875-1883.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

References (continued)

- Lagarias, J. C., The 3x + 1 problem and its generalizations, Am. Math. Monthly 92 (1985), 3-23.
- Monks, K. G., Yasinski, J., The Autoconjugacy of the 3x + 1 function, Discrete Math. 275 (2004), 219-236.
- Monks, K. M., The sufficiency of arithmetic progressions for the 3x+1 conjecture, Proc. Amer. Math. Soc., 134 (10), October (2006), 2861-2872.
- Monks, M., Endomorphisms of the shift dynamical system, discrete derivatives, and applications, Discrete Math. 309 (2009), 5196-5205.
- Sinisalo, M. K., On the minimal cycle lengths of the Collatz sequences, preprint, Univ. of Oulu, Finland, 2003.
- Wirsching, G., The Dynamical System Generated by the 3n + 1 Function, Lecture Notes in Math. 1681, Springer-Verlag, 1998, ISBN: 3-540-63970-5.