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Definitions

A partition λ of a positive integer n is a
nonincreasing sequence (λ1, λ2, . . . , λm) of
positive integers whose sum is n. Each λi is
called a part of λ.
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Definitions

A partition λ of a positive integer n is a
nonincreasing sequence (λ1, λ2, . . . , λm) of
positive integers whose sum is n. Each λi is
called a part of λ.

A partition into distinct parts is a partition
whose parts are all distinct.

p(n) is the number of partitions of n.

Q(n) is the number of partitions of n into
distinct parts.

AMS/MAA Joint Mathematics Meetings - Washington, DC – p.2/21



The underlying problem
Since the functions p(n) and Q(n) have no known elegant closed
formula, we wish to uncover some of their number-theoretic
properties.
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Since the functions p(n) and Q(n) have no known elegant closed
formula, we wish to uncover some of their number-theoretic
properties.

Ramanujan discovered the famous congruence identities

p(5n+ 4) ≡ 0 (mod 5)

p(7n+ 5) ≡ 0 (mod 7)

p(11n+ 6) ≡ 0 (mod 11)
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Ramanujan discovered the famous congruence identities

p(5n+ 4) ≡ 0 (mod 5)

p(7n+ 5) ≡ 0 (mod 7)

p(11n+ 6) ≡ 0 (mod 11)

Similar identities have been found for Q(n). For instance,
Q(5n+ 1) ≡ 0 (mod 4) whenever n is not divisible by 5.
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The underlying problem
Since the functions p(n) and Q(n) have no known elegant closed
formula, we wish to uncover some of their number-theoretic
properties.

Ramanujan discovered the famous congruence identities

p(5n+ 4) ≡ 0 (mod 5)

p(7n+ 5) ≡ 0 (mod 7)

p(11n+ 6) ≡ 0 (mod 11)

Similar identities have been found for Q(n). For instance,
Q(5n+ 1) ≡ 0 (mod 4) whenever n is not divisible by 5.

Are there combinatorial explanations for these elegant identities?
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Dyson’s rank
Freeman Dyson conjectured that there is a combinatorial invariant
that sorts the partitions of 5n+ 4 into 5 equal-sized groups, thus
explaining the congruence p(5n+ 4) ≡ 0 (mod 5).
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Dyson’s rank
Freeman Dyson conjectured that there is a combinatorial invariant
that sorts the partitions of 5n+ 4 into 5 equal-sized groups, thus
explaining the congruence p(5n+ 4) ≡ 0 (mod 5).

Dyson defined the rank of a partition λ = (λ1, . . . , λm) to be
λ1 −m. For example, the rank of the following partition is 1:
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Dyson’s rank
Freeman Dyson conjectured that there is a combinatorial invariant
that sorts the partitions of 5n+ 4 into 5 equal-sized groups, thus
explaining the congruence p(5n+ 4) ≡ 0 (mod 5).

Dyson defined the rank of a partition λ = (λ1, . . . , λm) to be
λ1 −m. For example, the rank of the following partition is 1:

{
{

m = 4

λ1 = 5
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Combinatorial intepretations

Atkin and Swinnerton-Dyer: When the
partitions of 5n + 4 are sorted by their rank
modulo 5, the resulting 5 sets all have the
same number of elements!
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Combinatorial intepretations

Atkin and Swinnerton-Dyer: When the
partitions of 5n + 4 are sorted by their rank
modulo 5, the resulting 5 sets all have the
same number of elements!

Taken modulo 7, the rank also sorts the
partitions of 7n+5 into 7 equal-sized groups.
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Combinatorial intepretations

Atkin and Swinnerton-Dyer: When the
partitions of 5n + 4 are sorted by their rank
modulo 5, the resulting 5 sets all have the
same number of elements!

Taken modulo 7, the rank also sorts the
partitions of 7n + 5 into 7 equal-sized groups.

Failed to explain p(11n + 6) ≡ 0 (mod 11).
Garvan discovered the crank, which
explained this identity along with many other
congruences.
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The rank and Q(n)

Gordon and Ono: For any positive integer j, the set of integers n
for which Q(n) is divisible by 2j is dense in the positive integers.
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Gordon and Ono: For any positive integer j, the set of integers n
for which Q(n) is divisible by 2j is dense in the positive integers.

Can a rank or similar combinatorial invariant be used to explain
congruences for Q(n)?
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The rank and Q(n)

Gordon and Ono: For any positive integer j, the set of integers n
for which Q(n) is divisible by 2j is dense in the positive integers.

Can a rank or similar combinatorial invariant be used to explain
congruences for Q(n)?

The rank provides a combinatorial interpretation for j = 1 and j = 2!

Theorem (M.). Define T (m, k;n) to be the number of partitions of n into dis-

tinct parts having rank congruent to m (mod k). Then

T (0, 4;n) = T (1, 4;n) = T (2, 4;n) = T (3, 4;n)

if and only if 24n + 1 has a prime divisor p 6≡ ±1 (mod 24) such that the

largest power of p dividing 24n+ 1 is pe where e is odd.
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Outline of proof
Franklin’s Involution φ:
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φ

The fixed points of Franklin’s Involution are the pentagonal
partitions, with k(3k ± 1)/2 squares:
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φ

The fixed points of Franklin’s Involution are the pentagonal
partitions, with k(3k ± 1)/2 squares:

{k
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Outline of proof

Unless n = k(3k ± 1)/2, the rank of any partition λ of n into distinct
parts differs from that of φ(λ) by 2.
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Outline of proof

Unless n = k(3k ± 1)/2, the rank of any partition λ of n into distinct
parts differs from that of φ(λ) by 2.

For n 6= k(3k ± 1)/2, T (0, 4;n) = T (2, 4;n) and
T (1, 4;n) = T (3, 4;n).
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Outline of proof

Unless n = k(3k ± 1)/2, the rank of any partition λ of n into distinct
parts differs from that of φ(λ) by 2.

For n 6= k(3k ± 1)/2, T (0, 4;n) = T (2, 4;n) and
T (1, 4;n) = T (3, 4;n).

Andrews, Dyson, Hickerson: T (0, 2;n) = T (1, 2;n) if and only if
24n+ 1 has a prime divisor p 6≡ ±1 (mod 24) such that the largest
power of p dividing 24n+ 1 is pe for some odd positive integer e.
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Outline of proof

Unless n = k(3k ± 1)/2, the rank of any partition λ of n into distinct
parts differs from that of φ(λ) by 2.

For n 6= k(3k ± 1)/2, T (0, 4;n) = T (2, 4;n) and
T (1, 4;n) = T (3, 4;n).

Andrews, Dyson, Hickerson: T (0, 2;n) = T (1, 2;n) if and only if
24n+ 1 has a prime divisor p 6≡ ±1 (mod 24) such that the largest
power of p dividing 24n+ 1 is pe for some odd positive integer e.

Thus T (0, 4;n) = T (1, 4;n) = T (2, 4;n) = T (3, 4;n) for such n, and
the set of such n is dense in the integers. Thus Q(n) is nearly
always divisible by 4.
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Generating functions

Let Q(n, r) denote the number of partitions of n into
distinct parts having rank r, and define

G(z, q) =
∑

n,r

Q(n, r)zrqn.
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Generating functions

Let Q(n, r) denote the number of partitions of n into
distinct parts having rank r, and define

G(z, q) =
∑

n,r

Q(n, r)zrqn.

One can show that

G(z, q) = 1 +

∞∑

s=1

qs(s+1)/2

(1 − zq)(1 − zq2) · · · (1 − zqs)

for z, q ∈ C with |z| ≤ 1, |q| < 1.
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G(z, q) at fourth roots of unity z

Theorem (M.). Let q ∈ C with |q| < 1. Then

G(i, q) =
∞∑

k=0

ikqk(3k+1)/2 +
∞∑

k=1

ik−1qk(3k−1)/2

G(−i, q) =
∞∑

k=0

(−i)kqk(3k+1)/2 +
∞∑

k=1

(−i)k−1qk(3k−1)/2

G(1, q) =
∑∞

n=0Q(n)qn = (1 + q)(1 + q2)(1 + q3) · · · is a weight 0

modular form, in the variable τ where q = e2πiτ .
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Theorem (M.). Let q ∈ C with |q| < 1. Then
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G(1, q) =
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n=0Q(n)qn = (1 + q)(1 + q2)(1 + q3) · · · is a weight 0

modular form, in the variable τ where q = e2πiτ .

G(−1, q) =
∑∞

n=0(T (n; 0, 2) − T (n; 1, 2))qn has been studied in
depth by Andrews, Dyson, and Hickerson.
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A new false theta function (or two)

It follows that

qG(i, q24) =

∞∑

k=0

ikq(6k+1)2 +

∞∑

k=1

ik−1q(6k−1)2

and

qG(−i, q24) =
∞∑

k=0

(−i)kq(6k+1)2 +
∞∑

k=1

(−i)k−1q(6k−1)2 .
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A new false theta function (or two)

It follows that

qG(i, q24) =

∞∑

k=0

ikq(6k+1)2 +

∞∑

k=1

ik−1q(6k−1)2

and

qG(−i, q24) =
∞∑

k=0

(−i)kq(6k+1)2 +
∞∑

k=1

(−i)k−1q(6k−1)2 .

Not true theta functions, but they resemble theta functions in the
sense that their coefficients are roots of unity and are 0 whenever
the exponent of q is not a perfect square. Such functions are
known as false theta functions.
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More generating functions

Let p(n, r) denote the number of partitions of n having rank

r, and define

R(z, q) =
∑

n,r

p(n, r)zrqn.
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More generating functions

Let p(n, r) denote the number of partitions of n having rank

r, and define

R(z, q) =
∑

n,r

p(n, r)zrqn.

One can show that

R(z, q) = 1 +

∞∑

n=1

qn2

∏n
k=1(1 − zqk)(1 − z−1qk)

for z, q ∈ C with |z| ≤ 1, |q| < 1.
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More generating functions

Let p(n, r) denote the number of partitions of n having rank

r, and define

R(z, q) =
∑

n,r

p(n, r)zrqn.

One can show that

R(z, q) = 1 +

∞∑

n=1

qn2

∏n
k=1(1 − zqk)(1 − z−1qk)

for z, q ∈ C with |z| ≤ 1, |q| < 1.

R(−1, q) is one of Ramanujan’s famous “mock theta

functions”.
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The relation betweenG and R

Theorem (M.). We have

R(i, 1/q) = R(−i, 1/q) =
1 − i

2
G(i, q) +

1 + i

2
G(−i, q)
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The relation betweenG and R

Theorem (M.). We have

R(i, 1/q) = R(−i, 1/q) =
1 − i

2
G(i, q) +

1 + i

2
G(−i, q)

or alternatively,

qR(i, q−24) =
∞∑

n=0

(−1)n
(
q(12n+1)2 + q(12n+5)2 + q(12n+7)2 + q(12n+11)2

)

= q + q25 + q49 + q121 − q169

−q289 − q361 − q529 + q625 + · · · .
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The relation betweenG and R

Theorem (M.). We have

R(i, 1/q) = R(−i, 1/q) =
1 − i

2
G(i, q) +

1 + i

2
G(−i, q)

or alternatively,

qR(i, q−24) =
∞∑

n=0

(−1)n
(
q(12n+1)2 + q(12n+5)2 + q(12n+7)2 + q(12n+11)2

)

= q + q25 + q49 + q121 − q169

−q289 − q361 − q529 + q625 + · · · .

The analytic behavior of the false theta functions G(±i, q) gives the
behavior of R(±i, q) for q outside the unit disk!
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Relation to modular forms

Bringmann and Ono: If z 6= 1 is a root of unity,
the function R(z, q) is the “holomorphic part”
of a weight 1/2 harmonic Maass form.
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Relation to modular forms

Bringmann and Ono: If z 6= 1 is a root of unity,
the function R(z, q) is the “holomorphic part”
of a weight 1/2 harmonic Maass form.

Therefore, the functions G(±i, q−1) appear
naturally within the theory of automorphic
forms.
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Relation to modular forms

Bringmann and Ono: If z 6= 1 is a root of unity,
the function R(z, q) is the “holomorphic part”
of a weight 1/2 harmonic Maass form.

Therefore, the functions G(±i, q−1) appear
naturally within the theory of automorphic
forms.

What about G(w, q), and G(w, q−1), for other
roots of unity w?
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Relating G(w, q) to modular forms

Define the series

D(w; q) = (1 + w)G(w; q) + (1 − w)G(−w; q).
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Relating G(w, q) to modular forms

Define the series

D(w; q) = (1 + w)G(w; q) + (1 − w)G(−w; q).

For roots of unity ζ 6= 1, the following is a weight 0 modular form.

η(ζ; τ) := q
1

12

∞∏

n=1

(1 − ζqn)(1 − ζ−1qn) = q
1

12 (ζq; q)∞(ζ−1q; q)∞
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Relating G(w, q) to modular forms

Define the series

D(w; q) = (1 + w)G(w; q) + (1 − w)G(−w; q).

For roots of unity ζ 6= 1, the following is a weight 0 modular form.

η(ζ; τ) := q
1

12

∞∏

n=1

(1 − ζqn)(1 − ζ−1qn) = q
1

12 (ζq; q)∞(ζ−1q; q)∞

Theorem (M., Ono). We have

q
1

12 ·D(ζ; q)D(ζ−1; q) = 4 ·
η(2τ)4

η(τ)2η(ζ2; 2τ)

is a weight 1 modular form for roots of unity ζ 6= ±1.
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The function Ĝ(w, q)
Define Ĝ(w, q) = G(w, q−1). Formal manipulation yields

Ĝ(w, q) =
∑

n≥0

(−w−1)n

(w−1q; q)n
.
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The function Ĝ(w, q)
Define Ĝ(w, q) = G(w, q−1). Formal manipulation yields

Ĝ(w, q) =
∑

n≥0

(−w−1)n

(w−1q; q)n
.

This is not a well-defined q-series, but we can fix this by

considering Ĝt(w, q) =
∑t

n=0
(−w−1)n

(w−1q;q)n

.
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The function Ĝ(w, q)
Define Ĝ(w, q) = G(w, q−1). Formal manipulation yields

Ĝ(w, q) =
∑

n≥0

(−w−1)n

(w−1q; q)n
.

This is not a well-defined q-series, but we can fix this by

considering Ĝt(w, q) =
∑t

n=0
(−w−1)n

(w−1q;q)n

.

Theorem (M., Ono). Suppose that −w−1 6= 1 is anmth primitive root of unity.

If 0 ≤ r < m, then limn→∞ Ĝmn+r(w; q) is a well defined q-series and

satisfies

lim
n→∞

Ĝmn+r(w; q) = lim
n→∞

Ĝmn(w; q) +
(−w−1)r − 1

w + 1

1

(w−1q; q)∞
.
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Example: The case−w−1 = −1

Ĝ1(1; q) = −q − q2 − q3 − q4 − q5 − q6 − q7 − q8 − q9 − · · ·

Ĝ3(1; q) = −q − q2 − 2q3 − 2q4 − 3q5 − 4q6 − 5q7 − 6q8 − 8q9 − · · ·

Ĝ5(1; q) = −q − q2 − 2q3 − 2q4 − 4q5 − 5q6 − 7q7 − 9q8 − 13q9 − · · ·

Ĝ7(1; q) = −q − q2 − 2q3 − 2q4 − 4q5 − 5q6 − 8q7 − 10q8 − 15q9 − · · ·

Ĝ9(1; q) = −q − q2 − 2q3 − 2q4 − 4q5 − 5q6 − 8q7 − 10q8 − 16q9 − · · ·

and

Ĝ2(1; q) = 1 + q2 + q3 + 2q4 + 2q5 + 3q6 + 3q7 + 4q8 + 4q9 + · · ·

Ĝ4(1; q) = 1 + q2 + q3 + 3q4 + 3q5 + 5q6 + 6q7 + 9q8 + 10q9 + · · ·

Ĝ6(1; q) = 1 + q2 + q3 + 3q4 + 3q5 + 6q6 + 7q7 + 11q8 + 13q9 + · · ·

Ĝ8(1; q) = 1 + q2 + q3 + 3q4 + 3q5 + 6q6 + 7q7 + 12q8 + 14q9 + · · ·
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Relating Ĝ(w, q) to modular forms

For −w−1 a primitive mth root of unity, it now makes sense to
define the q-series

Ĝ(w, q) = lim
n→∞

Ĝmn(w; q).
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Relating Ĝ(w, q) to modular forms

For −w−1 a primitive mth root of unity, it now makes sense to
define the q-series

Ĝ(w, q) = lim
n→∞

Ĝmn(w; q).

Consider a twist of the third-order mock theta function of
Ramanujan:

ψ(w, q) :=
∑

n≥0

qn2

wn

(q; q2)n
.
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Relating Ĝ(w, q) to modular forms

For −w−1 a primitive mth root of unity, it now makes sense to
define the q-series

Ĝ(w, q) = lim
n→∞

Ĝmn(w; q).

Consider a twist of the third-order mock theta function of
Ramanujan:

ψ(w, q) :=
∑

n≥0

qn2

wn

(q; q2)n
.

Also define D̂(w, q) = (1+w−1)Ĝ(w, q)+ (1−w−2)(ψ(−w2, q)− 1).
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Relating Ĝ(w, q) to modular forms

Theorem (Folsom). Let −ω−1 6= 1 be a primitive mth root of unity. Then

q−1/12D̂(ω, q)D̂(ω−1, q) is the weight 1 modular form

q−1/12D̂(ω, q)D̂(ω−1q) =
η4(q2)η2(ω2, q)

η2(q)η3(ω2, q2)

where η(ω, q) = q1/12(ωq; q)∞(ω−1q; q)∞.
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Relating Ĝ(w, q) to modular forms

Theorem (Folsom). Let −ω−1 6= 1 be a primitive mth root of unity. Then

q−1/12D̂(ω, q)D̂(ω−1, q) is the weight 1 modular form

q−1/12D̂(ω, q)D̂(ω−1q) =
η4(q2)η2(ω2, q)

η2(q)η3(ω2, q2)

where η(ω, q) = q1/12(ωq; q)∞(ω−1q; q)∞.

Thus G and Ĝ appear naturally within the theory of automorphic
forms!
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Observations and Future Work
The rank fails to explain the divisibility of Q(n) by higher

powers of 2. Is there a generalization of the rank that can be

used to divide the partitions of Q(n) into m equal-sized

groups whenever Q(n) is divisible by m for any positive

integer m?
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Observations and Future Work
The rank fails to explain the divisibility of Q(n) by higher

powers of 2. Is there a generalization of the rank that can be

used to divide the partitions of Q(n) into m equal-sized

groups whenever Q(n) is divisible by m for any positive

integer m?

Are there other partition functions for which we can obtain

congruences via the rank or related combinatorial

invariants?

We have seen that G(z, q) and R(z, q) are related at z = ±i.

Are these the only values of z for which they are related in

some way?
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