The 3x + 1 conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
The $3x + 1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C : \mathbb{N} \rightarrow \mathbb{N}$ by $C(x) = \begin{cases} x/2 & \text{x is even} \\ 3x + 1 & \text{x is odd} \end{cases}$.
The 3x + 1 conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.

- Define $C : \mathbb{N} \rightarrow \mathbb{N}$ by $C(x) = \begin{cases} x/2 & \text{x is even} \\ 3x + 1 & \text{x is odd} \end{cases}$.

- What is the long-term behaviour of C as a discrete dynamical system?
The 3x + 1 conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C : \mathbb{N} \to \mathbb{N}$ by $C(x) = \begin{cases} x/2 & \text{x is even} \\ 3x + 1 & \text{x is odd} \end{cases}$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: 9
The $3x + 1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C : \mathbb{N} \rightarrow \mathbb{N}$ by $C(x) = \begin{cases} x/2 & x \text{ is even} \\ 3x + 1 & x \text{ is odd} \end{cases}$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28$
The 3x + 1 conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C : \mathbb{N} \to \mathbb{N}$ by $C(x) = \begin{cases} x/2 & \text{x is even} \\ 3x + 1 & \text{x is odd} \end{cases}$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \to 28 \to 14$
The $3x + 1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C : \mathbb{N} \to \mathbb{N}$ by
 \[
 C(x) = \begin{cases}
 x/2 & \text{if } x \text{ is even} \\
 3x + 1 & \text{if } x \text{ is odd}
 \end{cases}
 .

- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \to 28 \to 14 \to 7$
The $3x + 1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.

- Define $C : \mathbb{N} \to \mathbb{N}$ by $C(x) = \begin{cases} x/2 & \text{x is even} \\ 3x + 1 & \text{x is odd} \end{cases}$.

- What is the long-term behaviour of C as a discrete dynamical system?

- Example: $9 \to 28 \to 14 \to 7 \to 22$
The 3x + 1 conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C : \mathbb{N} \rightarrow \mathbb{N}$ by
 $$C(x) = \begin{cases}
 x/2 & \text{if } x \text{ is even} \\
 3x + 1 & \text{if } x \text{ is odd}
 \end{cases}.$$

- What is the long-term behaviour of C as a discrete dynamical system?

- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11$
The $3x + 1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C : \mathbb{N} \rightarrow \mathbb{N}$ by $C(x) = \begin{cases} x/2 & x \text{ is even} \\ 3x + 1 & x \text{ is odd} \end{cases}$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34$
The $3x + 1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C : \mathbb{N} \rightarrow \mathbb{N}$ by $C(x) = \begin{cases} x/2 & \text{if } x \text{ is even} \\ 3x + 1 & \text{if } x \text{ is odd} \end{cases}$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17$
The $3x + 1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C : \mathbb{N} \to \mathbb{N}$ by $C(x) = \begin{cases} x/2 & \text{x is even} \\ 3x + 1 & \text{x is odd} \end{cases}$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \to 28 \to 14 \to 7 \to 22 \to 11 \to 34 \to 17 \to 52$
The $3x + 1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C : \mathbb{N} \rightarrow \mathbb{N}$ by $C(x) = \begin{cases}
 x/2 & \text{if } x \text{ is even} \\
 3x + 1 & \text{if } x \text{ is odd}
 \end{cases}$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow 26$
The $3x + 1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C : \mathbb{N} \to \mathbb{N}$ by $C(x) = \begin{cases} x/2 & \text{if } x \text{ is even} \\ 3x + 1 & \text{if } x \text{ is odd} \end{cases}$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \to 28 \to 14 \to 7 \to 22 \to 11 \to 34 \to 17 \to 52 \to 26 \to 13$
The $3x + 1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C : \mathbb{N} \to \mathbb{N}$ by $C(x) = \begin{cases} \frac{x}{2} & \text{x is even} \\ 3x + 1 & \text{x is odd} \end{cases}$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \to 28 \to 14 \to 7 \to 22 \to 11 \to 34 \to 17 \to 52 \to 26 \to 13 \to 40$
The $3x + 1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C : \mathbb{N} \rightarrow \mathbb{N}$ by $C(x) = \begin{cases} x/2 & \text{x is even} \\ 3x + 1 & \text{x is odd} \end{cases}$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow 40 \rightarrow 20$
The $3x + 1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.

- Define $C : \mathbb{N} \to \mathbb{N}$ by $C(x) = \begin{cases} x/2 & \text{x is even} \\ 3x + 1 & \text{x is odd} \end{cases}$.

- What is the long-term behaviour of C as a discrete dynamical system?

- Example: $9 \to 28 \to 14 \to 7 \to 22 \to 11 \to 34 \to 17 \to 52 \to 26 \to 13 \to 40 \to 20 \to 10$
The $3x + 1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C : \mathbb{N} \rightarrow \mathbb{N}$ by $C(x) = \begin{cases}
 x/2 & \text{if } x \text{ is even} \\
 3x + 1 & \text{if } x \text{ is odd}
\end{cases}$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5$
The $3x + 1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C : \mathbb{N} \rightarrow \mathbb{N}$ by $C(x) = \begin{cases} x/2 & \text{if } x \text{ is even} \\ 3x + 1 & \text{if } x \text{ is odd} \end{cases}$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16$
The $3x + 1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C : \mathbb{N} \to \mathbb{N}$ by $C(x) = \begin{cases}
 x/2 & \text{x is even} \\
 3x + 1 & \text{x is odd}
\end{cases}$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \to 28 \to 14 \to 7 \to 22 \to 11 \to 34 \to 17 \to 52 \to 26 \to 13 \to 40 \to 20 \to 10 \to 5 \to 16 \to 8$
The $3x + 1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C : \mathbb{N} \to \mathbb{N}$ by $C(x) = \begin{cases} x/2 & \text{x is even} \\ 3x + 1 & \text{x is odd} \end{cases}$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \to 28 \to 14 \to 7 \to 22 \to 11 \to 34 \to 17 \to 52 \to 26 \to 13 \to 40 \to 20 \to 10 \to 5 \to 16 \to 8 \to 4$
The $3x + 1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C : \mathbb{N} \to \mathbb{N}$ by $C(x) = \begin{cases} x/2 & \text{if } x \text{ is even} \\ 3x + 1 & \text{if } x \text{ is odd} \end{cases}$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \to 28 \to 14 \to 7 \to 22 \to 11 \to 34 \to 17 \to 52 \to 26 \to 13 \to 40 \to 20 \to 10 \to 5 \to 16 \to 8 \to 4 \to 2$
The $3x + 1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C : \mathbb{N} \to \mathbb{N}$ by $C(x) = \begin{cases} x/2 & \text{if } x \text{ is even} \\ 3x + 1 & \text{if } x \text{ is odd} \end{cases}$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \to 28 \to 14 \to 7 \to 22 \to 11 \to 34 \to 17 \to 52 \to 26 \to 13 \to 40 \to 20 \to 10 \to 5 \to 16 \to 8 \to 4 \to 2 \to 1$
The $3x + 1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.

- Define $C : \mathbb{N} \to \mathbb{N}$ by $C(x) = \begin{cases} \frac{x}{2} & \text{x is even} \\ 3x + 1 & \text{x is odd} \end{cases}$.

- What is the long-term behaviour of C as a discrete dynamical system?

- Example: $9 \to 28 \to 14 \to 7 \to 22 \to 11 \to 34 \to 17 \to 52 \to 26 \to 13 \to 40 \to 20 \to 10 \to 5 \to 16 \to 8 \to 4 \to 2 \to 1 \to 4$
The $3x + 1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x) = \begin{cases}
 x/2 & \text{x is even} \\
 3x + 1 & \text{x is odd}
\end{cases}$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 2$
The $3x + 1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C : \mathbb{N} \rightarrow \mathbb{N}$ by $C(x) = \begin{cases} x/2 & \text{x is even} \\ 3x + 1 & \text{x is odd} \end{cases}$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 1 \cdots$
The $3x + 1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C : \mathbb{N} \rightarrow \mathbb{N}$ by $C(x) = \begin{cases}
\frac{x}{2} & \text{if } x \text{ is even} \\
3x + 1 & \text{if } x \text{ is odd}
\end{cases}$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 1 \cdots$
- **Collatz Conjecture:** The C-orbit $x, C(x), C(C(x)), \ldots$ of every positive integer x eventually enters the cycle containing 1.
The $3x + 1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C : \mathbb{N} \to \mathbb{N}$ by $C(x) = \begin{cases} x/2 & \text{x is even} \\ 3x + 1 & \text{x is odd} \end{cases}$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \to 28 \to 14 \to 7 \to 22 \to 11 \to 34 \to 17 \to 52 \to 26 \to 13 \to 40 \to 20 \to 10 \to 5 \to 16 \to 8 \to 4 \to 2 \to 1 \to 4 \to 2 \to 1 \cdots$

- **Collatz Conjecture:** The C-orbit $x, C(x), C(C(x)), \ldots$ of every positive integer x eventually enters the cycle containing 1.

- Can also use $T(x) = \begin{cases} x/2 & \text{x is even} \\ \frac{3x+1}{2} & \text{x is odd} \end{cases}$.
The $3x + 1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C : \mathbb{N} \rightarrow \mathbb{N}$ by $C(x) = \begin{cases} x/2 & x \text{ is even} \\ 3x + 1 & x \text{ is odd} \end{cases}$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 14 \rightarrow 7 \rightarrow 11 \rightarrow 17 \rightarrow 26 \rightarrow 13 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 2 \rightarrow 1 \ldots$
- **Collatz Conjecture:** The C-orbit $x, C(x), C(C(x)), \ldots$ of every positive integer x eventually enters the cycle containing 1.
- Can also use $T(x) = \begin{cases} x/2 & x \text{ is even} \\ \frac{3x+1}{2} & x \text{ is odd} \end{cases}$.
The Collatz graph G
Two smaller conjectures

- **The Nontrivial Cycles conjecture:** There are no T-cycles of positive integers other than the cycle 1, 2.
- **The Divergent Orbits conjecture:** The T-orbit of every positive integer is bounded and hence eventually cyclic.
- Together, these suffice to prove the Collatz conjecture.
Two smaller conjectures

- **The Nontrivial Cycles conjecture:** There are no T-cycles of positive integers other than the cycle $1, 2$.
- **The Divergent Orbits conjecture:** The T-orbit of every positive integer is bounded and hence eventually cyclic.
- Together, these suffice to prove the Collatz conjecture.
- Both still unsolved.
Starting point: sufficiency of arithmetic progressions

- Two positive integers *merge* if their orbits eventually meet.
Starting point: sufficiency of arithmetic progressions

- Two positive integers _merge_ if their orbits eventually meet.
- A set of S positive integers is _sufficient_ if every positive integer merges with an element of S.

Theorem. (K. M. Monks, 2006.) Every arithmetic sequence is sufficient.

In fact, Monks shows that every positive integer relatively prime to 3 can be _back-traced_ to an element of a given arithmetic sequence.

Every integer congruent to 0 mod 3 _forward-traces_ to an integer relatively prime to 3, at which point the orbit contains no more multiples of 3.
Starting point: sufficiency of arithmetic progressions

- Two positive integers *merge* if their orbits eventually meet.
- A set of S positive integers is *sufficient* if every positive integer merges with an element of S.
- **Theorem.** (K. M. Monks, 2006.) Every arithmetic sequence is sufficient.
Starting point: sufficiency of arithmetic progressions

- Two positive integers *merge* if their orbits eventually meet.
- A set of S positive integers is *sufficient* if every positive integer merges with an element of S.
- **Theorem.** (K. M. Monks, 2006.) Every arithmetic sequence is sufficient.
- In fact, Monks shows that every positive integer relatively prime to 3 can be *back-traced* to an element of a given arithmetic sequence.
Starting point: sufficiency of arithmetic progressions

- Two positive integers *merge* if their orbits eventually meet.
- A set of S positive integers is *sufficient* if every positive integer merges with an element of S.

Theorem. (K. M. Monks, 2006.) Every arithmetic sequence is sufficient.

- In fact, Monks shows that every positive integer relatively prime to 3 can be *back-traced* to an element of a given arithmetic sequence.
- Every integer congruent to 0 mod 3 *forward-traces* to an integer relatively prime to 3, at which point the orbit contains no more multiples of 3.
The Collatz graph G

\[x/2 \]
\[(3x + 1)/2 \]
The pruned Collatz graph \tilde{G}
Natural questions arising from the sufficiency of arithmetic progressions

1. Can we find a sufficient set with asymptotic density 0 in \(\mathbb{N} \)?
Natural questions arising from the sufficiency of arithmetic progressions

1. Can we find a sufficient set with asymptotic density 0 in \(\mathbb{N} \)?

2. For a given \(x \in \mathbb{N} \setminus 3\mathbb{N} \), how “close” is the nearest element of \(\{a + bN\}_{N \geq 0} \) that we can back-trace to?
Natural questions arising from the sufficiency of arithmetic progressions

1. Can we find a sufficient set with asymptotic density 0 in \(\mathbb{N} \)?

2. For a given \(x \in \mathbb{N} \setminus 3\mathbb{N} \), how “close” is the nearest element of \(\{a + bN\}_{N \geq 0} \) that we can back-trace to?

3. Starting from \(x = 1 \), can we chain these short back-tracing paths together to find which integers are in an infinite back-tracing path from 1?
Natural questions arising from the sufficiency of arithmetic progressions

1. Can we find a sufficient set with asymptotic density 0 in \mathbb{N}?

2. For a given $x \in \mathbb{N} \setminus 3\mathbb{N}$, how “close” is the nearest element of $\{a + bN\}_{N \geq 0}$ that we can back-trace to?

3. Starting from $x = 1$, can we chain these short back-tracing paths together to find which integers are in an infinite back-tracing path from 1?

4. In which infinite back-tracing paths does a given arithmetic sequence $\{a + bN\}$ occur?
Attempting the first question
A family of sparse sufficient sets

Proposition (Monks, Monks, Monks, M.)

For any function $f : \mathbb{N} \rightarrow \mathbb{N}$ and any positive integers a and b,

$$\{2^{f(n)}(a + bn) \mid n \in \mathbb{N}\}$$

is a sufficient set.

Proof.

Any positive integer x merges with some number of the form $a + bN$. Then $2^{f(N)}(a + bN)$, which maps to $a + bN$ after $f(N)$ iterations of T, also merges with x.

\[\square \]

Corollary

For any fixed a and b, the sequence $(a + bn) \cdot 2^n$ is a sufficient set with asymptotic density zero in the positive integers.
Natural questions arising from the sufficiency of arithmetic progressions

1. Can we find a sufficient set with asymptotic density 0 in \(\mathbb{N} \)?

2. For a given \(x \in \mathbb{N} \setminus 3\mathbb{N} \), how “close” is the nearest element of \(\{a + bN\}_{N \geq 0} \) that we can back-trace to?

3. Starting from \(x = 1 \), can we chain these short back-tracing paths together to find which integers are in an infinite back-tracing path from 1?

4. In which infinite back-tracing paths does a given arithmetic sequence \(\{a + bN\} \) occur?
Natural questions arising from the sufficiency of arithmetic progressions

1. Can we find a sufficient set with asymptotic density 0 in \(\mathbb{N} \)?
 Yes!

2. For a given \(x \in \mathbb{N} \setminus 3\mathbb{N} \), how “close” is the nearest element of \(\{a + bN\}_{N \geq 0} \) that we can back-trace to?

3. Starting from \(x = 1 \), can we chain these short back-tracing paths together to find which integers are in an infinite back-tracing path from 1?

4. In which infinite back-tracing paths does a given arithmetic sequence \(\{a + bN\} \) occur?
Attempting the second question
Efficient back-tracing

- Define the *length* of a finite back-tracing path to be the number of red arrows in the path.
Efficient back-tracing

- Define the *length* of a finite back-tracing path to be the number of red arrows in the path.
- Want to find the shortest back-tracing path to an element of the arithmetic sequence $a \mod b$ for various a and b.

Consider three cases: when b is a power of 2, a power of 3, or relatively prime to 2 and 3.
Efficient back-tracing

- Define the *length* of a finite back-tracing path to be the number of red arrows in the path.
- Want to find the shortest back-tracing path to an element of the arithmetic sequence $a \mod b$ for various a and b.
- Consider three cases: when b is a power of 2, a power of 3, or relatively prime to 2 and 3.
Efficient back-tracing

Proposition

Let $b \in \mathbb{N}$ with $\gcd(b, 6) = 1$, and let $a < b$ be a nonnegative integer. Let e be the order of $\frac{3}{2}$ modulo b. Then any $x \in \mathbb{N} \setminus 3\mathbb{N}$ can be back-traced to an integer congruent to a mod b via a path of length at most $(b - 1)e$.
Efficient back-tracing

Proposition
Let $b \in \mathbb{N}$ with $\gcd(b, 6) = 1$, and let $a < b$ be a nonnegative integer. Let e be the order of $\frac{3}{2}$ modulo b. Then any $x \in \mathbb{N} \setminus 3\mathbb{N}$ can be back-traced to an integer congruent to a mod b via a path of length at most $(b - 1)e$.

Proposition
Let $n \geq 1$ and $a < 2^n$ be nonnegative integers. Then any $x \in \mathbb{N} \setminus 3\mathbb{N}$ can be back-traced to an integer congruent to a mod 2^n using a path of length at most $\lceil \log_2 a + 1 \rceil$.
Efficient back-tracing

Proposition

Let \(m \geq 1 \) and \(a < 3^m \) be nonnegative integers. Then any \(x \in \mathbb{N} \setminus 3\mathbb{N} \) can be back-traced to infinitely many odd elements of \(a + 3^m\mathbb{N} \) via an admissible sequence of length 1.
Efficient back-tracing

Proposition

Let $m \geq 1$ and $a < 3^m$ be nonnegative integers. Then any $x \in \mathbb{N} \setminus 3\mathbb{N}$ can be back-traced to infinitely many odd elements of $a + 3^m\mathbb{N}$ via an admissible sequence of length 1.

Working mod 3^m is particularly nice because 2 is a primitive root mod 3^m. What about when 2 is a primitive root mod b?
Efficient back-tracing

Proposition

Let \(m \geq 1 \) and \(a < 3^m \) be nonnegative integers. Then any \(x \in \mathbb{N} \setminus 3\mathbb{N} \) can be back-traced to infinitely many odd elements of \(a + 3^m\mathbb{N} \) via an admissible sequence of length 1.

Working mod \(3^m \) is particularly nice because 2 is a primitive root mod \(3^m \). What about when 2 is a primitive root mod \(b \)?

Proposition

Let \(b \in \mathbb{N} \) with \(\gcd(b, 6) = 1 \) such that 2 is a primitive root mod \(b \). Let \(a \) be such that \(0 \leq a \leq b \) and \(\gcd(a, b) = 1 \). From any \(x \in \mathbb{N} \setminus 3\mathbb{N} \), there exists a back-tracing path of length at most 1 to an integer \(y \in \mathbb{N} \setminus 3\mathbb{N} \) with \(y \equiv a \pmod{b} \).
Natural questions arising from the sufficiency of arithmetic progressions

1. Can we find a sufficient set with asymptotic density 0 in \(\mathbb{N} \)?
 Yes!

2. For a given \(x \in \mathbb{N} \setminus 3\mathbb{N} \), how “close” is the nearest element of \(\{a + bN\}_{N \geq 0} \) that we can back-trace to?

3. Starting from \(x = 1 \), can we chain these short back-tracing paths together to find which integers are in an infinite back-tracing path from 1?

4. In which infinite back-tracing paths does a given arithmetic sequence \(\{a + bN\} \) occur?
Natural questions arising from the sufficiency of arithmetic progressions

1. Can we find a sufficient set with asymptotic density 0 in \(\mathbb{N} \)?
 Yes!

2. For a given \(x \in \mathbb{N} \setminus 3\mathbb{N} \), how “close” is the nearest element of \(\{a + bN\}_{N \geq 0} \) that we can back-trace to?
 Pretty close, depending on \(b \).

3. Starting from \(x = 1 \), can we chain these short back-tracing paths together to find which integers are in an infinite back-tracing path from 1?

4. In which infinite back-tracing paths does a given arithmetic sequence \(\{a + bN\} \) occur?
Attempting the third question
Infinite back-tracing

An infinite back-tracing sequence is a sequence of the form x_0, x_1, x_2, \ldots for which $T(x_i) = x_{i-1}$ for all $i \geq 1$.

An infinite back-tracing parity vector is the binary sequence formed by taking an infinite back-tracing sequence mod 2.

We think of an infinite back-tracing parity vector as an element of \mathbb{Z}_2, the ring of 2-adic integers.

Some are simple to describe: those that end in 0. These are the positive integers $\mathbb{N} \subset \mathbb{Z}_2$.

When there are infinitely many 1's, they are much harder to describe.
Infinite back-tracing

- An *infinite back-tracing sequence* is a sequence of the form

\[x_0, x_1, x_2, \ldots \]

for which \(T(x_i) = x_{i-1} \) for all \(i \geq 1 \).

- An *infinite back-tracing parity vector* is the binary sequence formed by taking an infinite back-tracing sequence mod 2.
Infinite back-tracing

- An infinite back-tracing sequence is a sequence of the form \(x_0, x_1, x_2, \ldots \)
 for which \(T(x_i) = x_{i-1} \) for all \(i \geq 1 \).

- An infinite back-tracing parity vector is the binary sequence formed by taking an infinite back-tracing sequence mod 2.

- We think of an infinite back-tracing parity vector as an element of \(\mathbb{Z}_2 \), the ring of 2-adic integers.
Infinite back-tracing

- An infinite back-tracing sequence is a sequence of the form

 \[x_0, x_1, x_2, \ldots \]

 for which \(T(x_i) = x_{i-1} \) for all \(i \geq 1 \).

- An infinite back-tracing parity vector is the binary sequence formed by taking an infinite back-tracing sequence mod 2.

- We think of an infinite back-tracing parity vector as an element of \(\mathbb{Z}_2 \), the ring of 2-adic integers.

- Some are simple to describe: those that end in \(\bar{0} \). These are the positive integers \(\mathbb{N} \subset \mathbb{Z}_2 \).
Infinite back-tracing

- An *infinite back-tracing sequence* is a sequence of the form

 \[x_0, x_1, x_2, \ldots \]

 for which \(T(x_i) = x_{i-1} \) for all \(i \geq 1 \).

- An *infinite back-tracing parity vector* is the binary sequence formed by taking an infinite back-tracing sequence mod 2.

- We think of an infinite back-tracing parity vector as an element of \(\mathbb{Z}_2 \), the ring of 2-adic integers.

- Some are simple to describe: those that end in \(0 \). These are the positive integers \(\mathbb{N} \subset \mathbb{Z}_2 \).

- When there are infinitely many 1’s, they are much harder to describe.
Uniqueness of infinite back-tracing vectors

Proposition

Let $x \in \mathbb{N} \setminus 3\mathbb{N}$, and suppose v is a back-tracing parity vector for x containing infinitely many 1’s. If v is also a back-tracing parity vector for y, then $x = y$.

(Barberstein, 1994.) This gives a map $\Phi : \mathbb{Z}_2 \to \mathbb{Z}_2$ that sends v to the unique 2-adic whose T-orbit, taken mod 2, is v. Similarly, we can define a map $\Psi : \mathbb{Z}_2 \setminus 3\mathbb{N} \to \mathbb{Z}_3$ that sends v to the unique 3-adic having v as an infinite back-tracing parity vector.
Uniqueness of infinite back-tracing vectors

Proposition

Let $x \in \mathbb{N} \setminus 3\mathbb{N}$, and suppose v is a back-tracing parity vector for x containing infinitely many 1’s. If v is also a back-tracing parity vector for y, then $x = y$.

- Idea of proof: The first m occurrences of 1 in v determine the congruence class of x mod 3^m.
Uniqueness of infinite back-tracing vectors

Proposition

Let $x \in \mathbb{N} \setminus 3\mathbb{N}$, and suppose v is a back-tracing parity vector for x containing infinitely many 1’s. If v is also a back-tracing parity vector for y, then $x = y$.

- Idea of proof: The first m occurrences of 1 in v determine the congruence class of $x \mod 3^m$.
- In the forward direction, the first n digits of the T-orbit of x taken mod 2 determine the congruence class of $x \mod 2^n$.

(Bernstein, 1994.) This gives a map $\Phi : \mathbb{Z}_2 \to \mathbb{Z}_2$ that sends v to the unique 2-adic whose T-orbit, taken mod 2, is v. Similarly, we can define a map $\Psi : \mathbb{Z}_3 \setminus 3\mathbb{N} \to \mathbb{Z}_3$ that sends v to the unique 3-adic having v as an infinite back-tracing parity vector.
Uniqueness of infinite back-tracing vectors

Proposition

Let $x \in \mathbb{N} \setminus 3\mathbb{N}$, and suppose v is a back-tracing parity vector for x containing infinitely many 1’s. If v is also a back-tracing parity vector for y, then $x = y$.

- Idea of proof: The first m occurrences of 1 in v determine the congruence class of $x \mod 3^m$.
- In the forward direction, the first n digits of the T-orbit of x taken mod 2 determine the congruence class of $x \mod 2^n$.
- (Bernstein, 1994.) This gives a map $\Phi : \mathbb{Z}_2 \rightarrow \mathbb{Z}_2$ that sends v to the unique 2-adic whose T-orbit, taken mod 2, is v.
Uniqueness of infinite back-tracing vectors

Proposition

Let \(x \in \mathbb{N} \setminus 3\mathbb{N} \), and suppose \(v \) is a back-tracing parity vector for \(x \) containing infinitely many 1’s. If \(v \) is also a back-tracing parity vector for \(y \), then \(x = y \).

- Idea of proof: The first \(m \) occurrences of 1 in \(v \) determine the congruence class of \(x \) mod \(3^m \).
- In the forward direction, the first \(n \) digits of the \(T \)-orbit of \(x \) taken mod 2 determine the congruence class of \(x \) mod \(2^n \).
- (Bernstein, 1994.) This gives a map \(\Phi : \mathbb{Z}_2 \rightarrow \mathbb{Z}_2 \) that sends \(v \) to the unique 2-adic whose \(T \)-orbit, taken mod 2, is \(v \).
- Similarly, we can define a map \(\Psi : \mathbb{Z}_2 \setminus \mathbb{N} \rightarrow \mathbb{Z}_3 \) that sends \(v \) to the unique 3-adic having \(v \) as an infinite back-tracing parity vector.
What are the back-tracing parity vectors starting from positive integers?

Proposition

Every back-tracing parity vector of a positive integer x, considered as a 2-adic integer, is either:

(a) a positive integer (ends in 0),
(b) immediately periodic (its binary expansion has the form $v_0...v_k$ where each $v_i \in \{0, 1\}$), or
(c) irrational.

Can we write down an irrational one? The best we can do is a recursive construction, such as the greedy back-tracing vector that follows red whenever possible. Even this is hard to describe explicitly.
What are the back-tracing parity vectors starting from positive integers?

Proposition

Every back-tracing parity vector of a positive integer x, considered as a 2-adic integer, is either:

(a) a positive integer (ends in $\bar{0}$),
What are the back-tracing parity vectors starting from positive integers?

Proposition

Every back-tracing parity vector of a positive integer x, considered as a 2-adic integer, is either:

(a) a positive integer (ends in 0),

(b) immediately periodic (its binary expansion has the form $v_0 \ldots v_k$ where each $v_i \in \{0, 1\}$), or
What are the back-tracing parity vectors starting from positive integers?

Proposition

Every back-tracing parity vector of a positive integer \(x \), considered as a \(2 \)-adic integer, is either:

(a) a positive integer (ends in \(\overline{0} \)),

(b) immediately periodic (its binary expansion has the form \(\overline{v_0 \ldots v_k} \) where each \(v_i \in \{0, 1\} \)), or

(c) irrational.
What are the back-tracing parity vectors starting from positive integers?

Proposition

Every back-tracing parity vector of a positive integer x, considered as a 2-adic integer, is either:

(a) a positive integer (ends in $\bar{0}$),

(b) immediately periodic (its binary expansion has the form $\overline{v_0\ldots v_k}$ where each $v_i \in \{0, 1\}$), or

(c) irrational.

Can we write down an irrational one?
What are the back-tracing parity vectors starting from positive integers?

Proposition

Every back-tracing parity vector of a positive integer x, considered as a 2-adic integer, is either:

(a) a positive integer (ends in 0),

(b) immediately periodic (its binary expansion has the form $v_0 \ldots v_k$ where each $v_i \in \{0, 1\}$), or

(c) irrational.

Can we write down an irrational one? The best we can do is a recursive construction, such as the greedy back-tracing vector that follows red whenever possible. Even this is hard to describe explicitly.
Another look at \tilde{G}

\begin{align*}
\frac{x}{2} & \quad \frac{3x+1}{2} \\
1 & \quad 2 & \quad 4 & \quad 8 & \quad 16 & \quad 32 & \quad 64 & \quad 128 & \quad 256 & \quad 512
\end{align*}
Natural questions arising from the sufficiency of arithmetic progressions

1. Can we find a sufficient set with asymptotic density 0 in \(\mathbb{N} \)?
 Yes!

2. For a given \(x \in \mathbb{N} \setminus 3\mathbb{N} \), how “close” is the nearest element of \(\{a + bN\}_{N \geq 0} \) that we can back-trace to?
 Pretty close, depending on \(b \).

3. Starting from \(x = 1 \), can we chain these short back-tracing paths together to find which integers are in an infinite back-tracing path from 1?

4. In which infinite back-tracing paths does a given arithmetic sequence \(\{a + bN\} \) occur?
Natural questions arising from the sufficiency of arithmetic progressions

1. Can we find a sufficient set with asymptotic density 0 in \(\mathbb{N} \)?
 Yes!

2. For a given \(x \in \mathbb{N} \setminus 3\mathbb{N} \), how “close” is the nearest element of \(\{a + bN\}_{N \geq 0} \) that we can back-trace to?
 Pretty close, depending on \(b \).

3. Starting from \(x = 1 \), can we chain these short back-tracing paths together to find which integers are in an infinite back-tracing path from 1?
 This turns out to be very hard to find explicitly.

4. In which infinite back-tracing paths does a given arithmetic sequence \(\{a + bN\} \) occur?
Attempting the fourth question
Strong sufficiency in the reverse direction

Theorem

Let \(x \in \mathbb{N} \setminus 3\mathbb{N} \). Then every infinite back-tracing sequence from \(x \) contains an element congruent to 2 mod 9.
Theorem

Let $x \in \mathbb{N} \setminus 3\mathbb{N}$. Then every infinite back-tracing sequence from x contains an element congruent to $2 \mod 9$.

We say that the set of positive integers congruent to $2 \mod 9$ is strongly sufficient in the reverse direction.
Proof by picture: the pruned Collatz graph mod 9.
Proof by picture: the pruned Collatz graph mod 9.
Strong sufficiency in the forward direction

- A similar argument shows that 2 mod 9 is strongly sufficient in the forward direction: the T-orbit of every positive integer contains an element congruent to 2 mod 9!
A similar argument shows that 2 mod 9 is *strongly sufficient in the forward direction*: the T-orbit of every positive integer contains an element congruent to 2 mod 9!

A set S is *strongly sufficient in the forward direction* if every divergent orbit and nontrivial cycle of positive integers intersects S. How this helps: Suppose we can show that, for instance, the set of integers congruent to 1 mod 2 is strongly sufficient for every n. Then the nontrivial cycles conjecture is true!
Strong sufficiency in the forward direction

- A similar argument shows that 2 mod 9 is strongly sufficient in the forward direction: the T-orbit of every positive integer contains an element congruent to 2 mod 9!

- A set S is strongly sufficient in the forward direction if every divergent orbit and nontrivial cycle of positive integers intersects S.

- A set S is strongly sufficient in the reverse direction if every infinite back-tracing sequence containing infinitely many odd elements, other than 1, 2, intersects S.

How this helps: Suppose we can show that, for instance, the set of integers congruent to 1 mod 2 is strongly sufficient for every n. Then the nontrivial cycles conjecture is true!
Strong sufficiency in the forward direction

- A similar argument shows that $2 \mod 9$ is strongly sufficient in the forward direction: the T-orbit of every positive integer contains an element congruent to $2 \mod 9$!

- A set S is strongly sufficient in the forward direction if every divergent orbit and nontrivial cycle of positive integers intersects S.

- A set S is strongly sufficient in the reverse direction if every infinite back-tracing sequence containing infinitely many odd elements, other than 1, 2, intersects S.

- S is strongly sufficient if it is strongly sufficient in both directions.
Strong sufficiency in the forward direction

- A similar argument shows that 2 mod 9 is strongly sufficient in the forward direction: the T-orbit of every positive integer contains an element congruent to 2 mod 9!

- A set S is strongly sufficient in the forward direction if every divergent orbit and nontrivial cycle of positive integers intersects S.

- A set S is strongly sufficient in the reverse direction if every infinite back-tracing sequence containing infinitely many odd elements, other than $1, 2$, intersects S.

- S is strongly sufficient if it is strongly sufficient in both directions.

- **How this helps:** Suppose we can show that, for instance, the set of integers congruent to 1 mod 2^n is strongly sufficient for every n. Then the nontrivial cycles conjecture is true!
The graphs Γ_k

Definition
For $k \in \mathbb{N}$, define Γ_k to be the two-colored directed graph on $\mathbb{Z}/k\mathbb{Z}$ having a black arrow from r to s if and only if $\exists x, y \in \mathbb{N}$ with

$$x \equiv r \text{ and } y \equiv s \pmod{k}$$

with $x/2 = y$, and a red arrow from r to s if there are such an x and y with $(3x + 1)/2 = y$.
Example: Γ_9
Example: Γ_7
A criterion for strong sufficiency

Theorem

Let $n \in \mathbb{N}$, and let a_1, \ldots, a_k be k distinct residues mod n.

A criterion for strong sufficiency

Theorem

Let $n \in \mathbb{N}$, and let a_1, \ldots, a_k be k distinct residues mod n.

- Let Γ_n' be the vertex minor of Γ_n formed by deleting the nodes labeled a_1, \ldots, a_k and all arrows connected to them.

If Γ_n'' is a disjoint union of cycles and isolated vertices, and each of the cycles have length less than $630, 138, 897$, then the set a_1, \ldots, a_k mod n is strongly sufficient.
A criterion for strong sufficiency

Theorem

Let $n \in \mathbb{N}$, and let a_1, \ldots, a_k be k distinct residues mod n.

- Let Γ'_n be the vertex minor of Γ_n formed by deleting the nodes labeled a_1, \ldots, a_k and all arrows connected to them.

- Let Γ''_n be the graph formed from Γ'_n by deleting any edge which is not contained in any cycle of Γ'_n.

If Γ''_n is a disjoint union of cycles and isolated vertices, and each of the cycles have length less than 630, then the set a_1, \ldots, a_k mod n is strongly sufficient.
A criterion for strong sufficiency

Theorem

Let \(n \in \mathbb{N} \), and let \(a_1, \ldots, a_k \) be \(k \) distinct residues mod \(n \).

- Let \(\Gamma'_n \) be the vertex minor of \(\Gamma_n \) formed by deleting the nodes labeled \(a_1, \ldots, a_k \) and all arrows connected to them.

- Let \(\Gamma''_n \) be the graph formed from \(\Gamma'_n \) by deleting any edge which is not contained in any cycle of \(\Gamma'_n \).

If \(\Gamma''_n \) is a disjoint union of cycles and isolated vertices, and each of the cycles have length less than \(630, 138, 897 \), then the set \(a_1, \ldots, a_k \mod n \) is strongly sufficient.
A list of strongly sufficient sets

<table>
<thead>
<tr>
<th>Modulo 2</th>
<th>Modulo 3</th>
<th>Modulo 4</th>
<th>Modulo 5</th>
<th>Modulo 6</th>
<th>Modulo 7</th>
<th>Modulo 8</th>
<th>Modulo 9</th>
<th>Modulo 10</th>
<th>Modulo 11</th>
<th>Modulo 12</th>
<th>Modulo 13</th>
<th>Modulo 14</th>
<th>Modulo 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1, 4</td>
<td>1, 2, 6</td>
<td>3, 4, 7</td>
<td>2, 7, 8</td>
<td>4, 5, 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1, 8</td>
<td>0, 1, 3</td>
<td>3, 6, 7</td>
<td>3, 4, 5</td>
<td>4, 6, 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4, 5</td>
<td>0, 1, 6</td>
<td>3, 7, 8</td>
<td>3, 4, 8</td>
<td>4, 11, 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4, 7</td>
<td>2, 4, 7</td>
<td>4, 5, 7</td>
<td>3, 4, 9</td>
<td>6, 7, 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5, 8</td>
<td>2, 5, 7</td>
<td>5, 6, 7</td>
<td>3, 4, 10</td>
<td>6, 8, 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7, 8</td>
<td>0, 1, 4</td>
<td>5, 7, 8</td>
<td>3, 6, 10</td>
<td>7, 8, 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4, 7</td>
<td>0, 1, 6</td>
<td>0, 1, 5</td>
<td>1, 7, 10</td>
<td>8, 9, 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5, 6</td>
<td>0, 1, 8</td>
<td>0, 1, 8</td>
<td>1, 8, 11</td>
<td>1, 5, 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0, 3</td>
<td>6, 8</td>
<td>0, 2, 4</td>
<td>0, 1, 9</td>
<td>2, 4, 11</td>
<td>1, 5, 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0, 1</td>
<td>6, 9</td>
<td>0, 2, 6</td>
<td>0, 2, 5</td>
<td>4, 7, 10</td>
<td>1, 5, 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0, 2</td>
<td>1, 5</td>
<td>0, 2, 7</td>
<td>0, 2, 8</td>
<td>1, 3, 4</td>
<td>1, 5, 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 3</td>
<td>2, 5</td>
<td>0, 2, 8</td>
<td>0, 4, 5</td>
<td>1, 4, 6</td>
<td>1, 7, 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2, 3</td>
<td>2, 8</td>
<td>0, 4, 7</td>
<td>0, 4, 8</td>
<td>1, 8, 11</td>
<td>1, 8, 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 4</td>
<td>2, 10</td>
<td>0, 6, 7</td>
<td>0, 4, 9</td>
<td>2, 3, 7</td>
<td>1, 8, 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 5</td>
<td>4, 5</td>
<td>0, 7, 8</td>
<td>1, 2, 7</td>
<td>2, 6, 7</td>
<td>1, 10, 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4, 5</td>
<td>5, 8</td>
<td>1, 3, 4</td>
<td>1, 3, 5</td>
<td>3, 4, 9</td>
<td>1, 10, 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2, 3</td>
<td>7, 8</td>
<td>1, 3, 6</td>
<td>1, 3, 8</td>
<td>3, 4, 10</td>
<td>2, 5, 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2, 5</td>
<td>8, 11</td>
<td>1, 3, 8</td>
<td>1, 3, 9</td>
<td>3, 7, 10</td>
<td>2, 5, 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3, 4</td>
<td>7, 18</td>
<td>1, 4, 5</td>
<td>1, 3, 10</td>
<td>3, 10, 11</td>
<td>2, 5, 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4, 5</td>
<td>2, 18</td>
<td>1, 5, 6</td>
<td>1, 5, 7</td>
<td>4, 6, 9</td>
<td>2, 5, 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4, 6</td>
<td>2, 11</td>
<td>1, 5, 8</td>
<td>1, 7, 8</td>
<td>4, 6, 10</td>
<td>2, 7, 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 4</td>
<td>7, 18</td>
<td>2, 3, 4</td>
<td>1, 7, 9</td>
<td>4, 8, 9</td>
<td>2, 7, 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 5</td>
<td>8, 10</td>
<td>2, 3, 5</td>
<td>2, 3, 5</td>
<td>6, 7, 10</td>
<td>2, 8, 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2, 3</td>
<td>8, 14</td>
<td>2, 3, 7</td>
<td>2, 3, 7</td>
<td>6, 10, 11</td>
<td>2, 8, 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2, 6</td>
<td>10, 11</td>
<td>2, 3, 8</td>
<td>2, 3, 8</td>
<td>7, 8, 9</td>
<td>2, 10, 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3, 4</td>
<td>5, 21</td>
<td>2, 4, 5</td>
<td>2, 3, 9</td>
<td>8, 9, 11</td>
<td>2, 10, 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3, 5</td>
<td>0, 1, 3</td>
<td>2, 5, 6</td>
<td>2, 3, 10</td>
<td>8, 10, 11</td>
<td>2, 10, 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4, 6</td>
<td>0, 1, 5</td>
<td>2, 5, 7</td>
<td>2, 5, 7</td>
<td>3, 4, 10</td>
<td>4, 5, 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5, 6</td>
<td>0, 1, 6</td>
<td>2, 5, 8</td>
<td>2, 6, 7</td>
<td>4, 5, 6</td>
<td>4, 10, 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Natural questions arising from the sufficiency of arithmetic progressions

1. Can we find a sufficient set with asymptotic density 0 in \(\mathbb{N} \)?

 Yes!

2. For a given \(x \in \mathbb{N} \setminus 3\mathbb{N} \), how “close” is the nearest element of \(\{a + b\mathbb{N}\}_{N \geq 0} \) that we can back-trace to?

 Pretty close, depending on \(b \).

3. Starting from \(x = 1 \), can we chain these short back-tracing paths together to find which integers are in an infinite back-tracing path from 1?

 This turns out to be very hard to find explicitly.

4. In which infinite back-tracing paths does a given arithmetic sequence \(\{a + b\mathbb{N}\} \) occur?
Natural questions arising from the sufficiency of arithmetic progressions

1. Can we find a sufficient set with asymptotic density 0 in \(\mathbb{N} \)?
 Yes!

2. For a given \(x \in \mathbb{N} \setminus 3\mathbb{N} \), how “close” is the nearest element of \(\{a + bN\}_{N \geq 0} \) that we can back-trace to?
 Pretty close, depending on \(b \).

3. Starting from \(x = 1 \), can we chain these short back-tracing paths together to find which integers are in an infinite back-tracing path from 1?
 This turns out to be very hard to find explicitly.

4. In which infinite back-tracing paths does a given arithmetic sequence \(\{a + bN\} \) occur?
 We’re still working on a general answer, but we know that many (such as \(2 \mod 9 \)) occur in all of them!
Question 5.

Which deeper structure theorems about T-orbits can be used to improve on these results?
Background on percentage of 1’s in a T-orbit

- **Theorem.** (Eliahou, 1993.) If a T-cycle of positive integers of length n contains r odd positive integers (and $n - r$ even positive integers), and has minimal element m and maximal element M, then

$$\frac{\ln(2)}{\ln \left(3 + \frac{1}{m}\right)} \leq \frac{r}{n} \leq \frac{\ln(2)}{\ln \left(3 + \frac{1}{M}\right)}$$

- **Theorem.** (Lagarias, 1985.) Similarly, the percentage of 1’s in any divergent orbit is at least $\frac{\ln(2)}{\ln(3)} \approx 0.6309$. With these facts, we can show 20 mod 27 is strongly sufficient in the forward direction.
Background on percentage of 1’s in a T-orbit

▶ **Theorem.** (Eliahou, 1993.) If a T-cycle of positive integers of length n contains r odd positive integers (and $n - r$ even positive integers), and has minimal element m and maximal element M, then

$$\frac{\ln(2)}{\ln \left(3 + \frac{1}{m}\right)} \leq \frac{r}{n} \leq \frac{\ln(2)}{\ln \left(3 + \frac{1}{M}\right)}$$

▶ **Theorem.** (Lagarias, 1985.) Similarly, the percentage of 1’s in any divergent orbit is at least $\frac{\ln(2)}{\ln(3)} \approx .6309$.

Background on percentage of 1’s in a T-orbit

- **Theorem.** (Eliahou, 1993.) If a T-cycle of positive integers of length n contains r odd positive integers (and $n-r$ even positive integers), and has minimal element m and maximal element M, then

\[
\frac{\ln(2)}{\ln(3 + \frac{1}{m})} \leq \frac{r}{n} \leq \frac{\ln(2)}{\ln(3 + \frac{1}{M})}
\]

- **Theorem.** (Lagarias, 1985.) Similarly, the percentage of 1’s in any divergent orbit is at least $\frac{\ln(2)}{\ln(3)} \approx .6309$.

- With these facts, we can show $20 \mod 27$ is strongly sufficient in the forward direction.
Looking mod 27

\[\frac{3x + 1}{2} \mod 27 \]
Avoiding $20 \mod 27$

\[
\frac{x}{2} \mod 27
\]

\[
\frac{3x + 1}{2} \mod 27
\]
Avoiding $20 \mod 27$

$x/2 \mod 27$

$(3x + 1)/2 \mod 27$
Question 5.

Which deeper structure theorems about T-orbits can be used to improve on these results?

- The percentage of 1’s in any divergent orbit or nontrivial cycle is at least 63%. This can be used to obtain more strongly sufficient sets.
Background on T as a 2-adic dynamical system
Background on T as a 2-adic dynamical system

- Extend T to a map $\mathbb{Z}_2 \rightarrow \mathbb{Z}_2$ where \mathbb{Z}_2 is the ring of 2-adic integers. Here, $3 = 110000 \cdots$.

- Parity vector function: $\Phi^{-1}: \mathbb{Z}_2 \rightarrow \mathbb{Z}_2$ sends x to the T-orbit of x taken mod 2.

- Shift map: $\sigma: \mathbb{Z}_2 \rightarrow \mathbb{Z}_2$ sends $a_0 a_1 a_2 a_3 \ldots$ to $a_1 a_2 a_3 \ldots$.

- Theorem. (Bernstein, Lagarias.) Inverse parity vector function $\Phi: \mathbb{Z}_2 \rightarrow \mathbb{Z}_2$ is well defined, and $T = \Phi \circ \sigma \circ \Phi^{-1}$.
Background on T as a 2-adic dynamical system

- Extend T to a map $\mathbb{Z}_2 \to \mathbb{Z}_2$ where \mathbb{Z}_2 is the ring of 2-adic integers. Here, $3 = 110000 \cdots$.

- **Parity vector function:** $\Phi^{-1} : \mathbb{Z}_2 \to \mathbb{Z}_2$ sends x to the T-orbit of x taken mod 2.

- **Theorem.** (Bernstein, Lagarias.) Inverse parity vector function $\Phi : \mathbb{Z}_2 \to \mathbb{Z}_2$ is well defined, and $T = \Phi^{-1} \circ \sigma \circ \Phi$.

Background on T as a 2-adic dynamical system

- Extend T to a map $\mathbb{Z}_2 \rightarrow \mathbb{Z}_2$ where \mathbb{Z}_2 is the ring of 2-adic integers. Here, $3 = 110000 \cdots$.
- **Parity vector function:** $\Phi^{-1} : \mathbb{Z}_2 \rightarrow \mathbb{Z}_2$ sends x to the T-orbit of x taken mod 2.
- **Shift map:** $\sigma : \mathbb{Z}_2 \rightarrow \mathbb{Z}_2$ sends $a_0a_1a_2a_3\ldots$ to $a_1a_2a_3\ldots$
Background on T as a 2-adic dynamical system

- Extend T to a map $\mathbb{Z}_2 \rightarrow \mathbb{Z}_2$ where \mathbb{Z}_2 is the ring of 2-adic integers. Here, $3 = 110000 \cdots$.
- Parity vector function: $\Phi^{-1} : \mathbb{Z}_2 \rightarrow \mathbb{Z}_2$ sends x to the T-orbit of x taken mod 2.
- Shift map: $\sigma : \mathbb{Z}_2 \rightarrow \mathbb{Z}_2$ sends $a_0a_1a_2a_3\ldots$ to $a_1a_2a_3\ldots$.
- Theorem. (Bernstein, Lagarias.) Inverse parity vector function

$$\Phi : \mathbb{Z}_2 \rightarrow \mathbb{Z}_2$$

is well defined, and

$$T = \Phi \circ \sigma \circ \Phi^{-1}.$$
Background on T as a 2-adic dynamical system

- In 1969, Hedlund classified the continuous endomorphisms of σ: functions $f : \mathbb{Z}_2 \rightarrow \mathbb{Z}_2$ satisfying $f \circ \sigma = \sigma \circ f$.

- In particular, the only two automorphisms (bijective endomorphisms) are the identity map and the bit complement map V.

- $V(100100100 \ldots) = 011011011 \ldots$.

- In 2004, K. G. Monks and J. Yasinski used V to construct the unique nontrivial autoconjugacy of T: $\Omega := \Phi \circ V \circ \Phi^{-1}$.
Background on T as a 2-adic dynamical system

- In 1969, Hedlund classified the continuous endomorphisms of σ: functions $f : \mathbb{Z}_2 \to \mathbb{Z}_2$ satisfying $f \circ \sigma = \sigma \circ f$.
- In particular, the only two automorphisms (bijective endomorphisms) are the identity map and the bit complement map V.
- $V(100100100\ldots) = 011011011\ldots$.
Background on T as a 2-adic dynamical system

- In 1969, Hedlund classified the continuous endomorphisms of σ: functions $f : \mathbb{Z}_2 \to \mathbb{Z}_2$ satisfying $f \circ \sigma = \sigma \circ f$.
- In particular, the only two automorphisms (bijective endomorphisms) are the identity map and the bit complement map V.
- $V(100100100 \ldots) = 011011011 \ldots$.
- In 2004, K. G. Monks and J. Yasinski used V to construct the unique nontrivial autoconjugacy of T:

$$\Omega := \Phi \circ V \circ \Phi^{-1}.$$
The autoconjugacy Ω
Working with Ω

- Ω is *solenoidal*, that is, it induces a permutation on $\mathbb{Z}/2^n\mathbb{Z}$ for all n.

Example:

$$\Omega(110 \cdots) = \Phi \circ V \circ \Phi^{-1}(110 \cdots) = \Phi(001 \cdots) = 001 \cdots$$

- We say that, mod 8, $\Omega(3) = 4$.

Working with Ω

- Ω is *solenoidal*, that is, it induces a permutation on $\mathbb{Z}/2^n\mathbb{Z}$ for all n.
- Ω is also an involution that pairs evens with odds.
Working with Ω

- Ω is *solenoidal*, that is, it induces a permutation on $\mathbb{Z}/2^n\mathbb{Z}$ for all n.
- Ω is also an involution that pairs evens with odds.
- Example:

$$\Omega(110\cdots) = \Phi \circ V \circ \Phi^{-1}(110\cdots)$$

$$= \Phi \circ V(110\cdots)$$

$$= \Phi(001\cdots)$$

$$= 001\cdots$$
Working with Ω

- Ω is solenoidal, that is, it induces a permutation on $\mathbb{Z}/2^n\mathbb{Z}$ for all n.
- Ω is also an involution that pairs evens with odds.
- Example:

 \[
 \Omega(110\cdots) = \Phi \circ V \circ \Phi^{-1}(110\cdots) \\
 = \Phi \circ V(110\cdots) \\
 = \Phi(001\cdots) \\
 = 001\cdots
 \]

- We say that, mod 8, $\Omega(3) = 4$.

Self-duality in Γ_{2n}

- Define the *color dual* of a graph Γ_k to be the graph formed by replacing every red arrow with a black arrow and vice versa.

Theorem

For any $n \geq 1$, the graph Γ_{2n} is self-color-dual.

Idea of proof: if we replace each label a with $\Omega(a) \mod 2^n$, we get the color dual of Γ_{2n}.
Self-duality in Γ_{2^n}

- Define the *color dual* of a graph Γ_k to be the graph formed by replacing every red arrow with a black arrow and vice versa.
- We say a graph is *self-color-dual* if it is isomorphic to its color dual up to a re-labeling of the vertices.

Theorem
For any $n \geq 1$, the graph Γ_{2^n} is self-color-dual.

Idea of proof: if we replace each label a with $\Omega(a) \mod 2^n$, we get the color dual of Γ_{2^n}.
Self-duality in $Γ_{2^n}$

- Define the color dual of a graph $Γ_k$ to be the graph formed by replacing every red arrow with a black arrow and vice versa.
- We say a graph is self-color-dual if it is isomorphic to its color dual up to a re-labeling of the vertices.

Theorem

For any $n \geq 1$, the graph $Γ_{2^n}$ is self-color-dual.
Self-duality in Γ_{2^n}

- Define the color dual of a graph Γ_k to be the graph formed by replacing every red arrow with a black arrow and vice versa.
- We say a graph is self-color-dual if it is isomorphic to its color dual up to a re-labeling of the vertices.

Theorem

For any $n \geq 1$, the graph Γ_{2^n} is self-color-dual.

Idea of proof: if we replace each label a with $\Omega(a) \mod 2^n$, we get the color dual of Γ_{2^n}.
Example: Γ_8

$x/2 \mod 8$

$(3x + 1)/2 \mod 8$
Hedlund’s other endomorphisms

- **Discrete derivative map:** $D : \mathbb{Z}_2 \to \mathbb{Z}_2$ by

 $D(a_0a_1a_2 \ldots) = d_0d_1d_2 \ldots$ where $d_i = |a_i - a_{i+1}|$ for all i.
Hedlund’s other endomorphisms

- **Discrete derivative map:** $D : \mathbb{Z}_2 \to \mathbb{Z}_2$ by
 $D(a_0a_1a_2\ldots) = d_0d_1d_2\ldots$ where $d_i = |a_i - a_{i+1}|$ for all i.

- Then
 $$R := \Phi \circ D \circ \Phi^{-1}$$

 is an endomorphism of T.

(M., 2009.) R is a two-to-one map, and $R(\Omega(x)) = R(x)$ for all x.

Can use R to “fold” $\Gamma_2^n + 1$ onto Γ_2^n by identifying Ω-pairs.
Hedlund’s other endomorphisms

- **Discrete derivative map:** \(D : \mathbb{Z}_2 \rightarrow \mathbb{Z}_2 \) by
\[
D(a_0a_1a_2 \ldots) = d_0d_1d_2 \ldots \quad \text{where} \quad d_i = |a_i - a_{i+1}| \quad \text{for all} \quad i.
\]

- Then
\[
R := \Phi \circ D \circ \Phi^{-1}
\]
is an endomorphism of \(T \).

- (M., 2009.) \(R \) is a two-to-one map, and \(R(\Omega(x)) = R(x) \) for all \(x \).
Hedlund’s other endomorphisms

- **Discrete derivative map:** $D: \mathbb{Z}_2 \rightarrow \mathbb{Z}_2$ by $D(a_0a_1a_2\ldots) = d_0d_1d_2\ldots$ where $d_i = |a_i - a_{i+1}|$ for all i.

- Then $R := \Phi \circ D \circ \Phi^{-1}$ is an endomorphism of T.

- (M., 2009.) R is a two-to-one map, and $R(\Omega(x)) = R(x)$ for all x.

- Can use R to “fold” $\Gamma_{2^{n+1}}$ onto Γ_{2^n} by identifying Ω-pairs.
The endomorphism R
Folding $\Gamma_{2^{n+1}}$ onto Γ_{2^n}

<table>
<thead>
<tr>
<th>Γ_{2^n}</th>
<th>$\Gamma_{2^{n+1}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R(x)$</td>
<td>x</td>
</tr>
<tr>
<td>$R(y)$</td>
<td>y</td>
</tr>
</tbody>
</table>

\iff

x or y

\iff

x or y
Folding Γ_8 onto Γ_4

$x/2 \mod 8$

$(3x + 1)/2 \mod 8$
Folding Γ_8 onto Γ_4

\[
x / 2 \mod 4
\]
\[
(3x + 1) / 2 \mod 4
\]
Folding Γ_8 onto Γ_4

\begin{align*}
\frac{x}{2} \mod 4 \\
\frac{3x + 1}{2} \mod 4
\end{align*}
Question 5.

Which deeper structure theorems about T-orbits can be used to improve on these results?

- The percentage of 1’s in any divergent orbit or nontrivial cycle is at least 63%. This can be used to obtain more strongly sufficient sets.
Question 5.

Which deeper structure theorems about T-orbits can be used to improve on these results?

- The percentage of 1’s in any divergent orbit or nontrivial cycle is at least 63%. This can be used to obtain more strongly sufficient sets.

- The structure of T as a 2-adic dynamical system can be used to obtain properties of the graphs Γ_{2^n}.
Future work

▶ In 2010, K. Monks and B. Kraft studied the continuous endomorphisms of T that come from Hedlund’s other endomorphisms. Can we use these to obtain further folding results?
Future work

- In 2010, K. Monks and B. Kraft studied the continuous endomorphisms of T that come from Hedlund’s other endomorphisms. Can we use these to obtain further folding results?
- How can we make use of self-duality and folding mod powers of 2 to obtain more strongly sufficient sets?
Future work

- In 2010, K. Monks and B. Kraft studied the continuous endomorphisms of T that come from Hedlund’s other endomorphisms. Can we use these to obtain further folding results?
- How can we make use of self-duality and folding mod powers of 2 to obtain more strongly sufficient sets?
- Are there other graph-theoretic techniques that would be useful?
Future work

- In 2010, K. Monks and B. Kraft studied the continuous endomorphisms of T that come from Hedlund’s other endomorphisms. Can we use these to obtain further folding results?
- How can we make use of self-duality and folding mod powers of 2 to obtain more strongly sufficient sets?
- Are there other graph-theoretic techniques that would be useful?
- Can we find an irrational infinite back-tracing parity vector explicitly, say using algebraic properties?
Acknowledgements

The authors would like to thank Gina Monks for her support throughout this research project.