On the distribution of arithmetic sequences in the Collatz graph

Keenan Monks, Harvard University
Ken G. Monks, University of Scranton
Ken M. Monks, Colorado State University
Maria Monks, UC Berkeley

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$.

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$.
- What is the long-term behaviour of C as a discrete dynamical system?

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: 9

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28$

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14$

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7$

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22$

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11$

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34$

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17$

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52$

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow$ 26

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow$ $26 \rightarrow 13$

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow$ $26 \rightarrow 13 \rightarrow 40$

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow$ $26 \rightarrow 13 \rightarrow 40 \rightarrow 20$

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow$ $26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10$

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow$ $26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5$

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow$ $26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16$

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow$ $26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8$

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow$ $26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4$

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow$ $26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2$

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow$ $26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow$ $26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow$ 4

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow$ $26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow$ $4 \rightarrow 2$

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow$ $26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow$ $4 \rightarrow 2 \rightarrow 1 \cdots$

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow$ $26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow$ $4 \rightarrow 2 \rightarrow 1 \cdots$
- Collatz Conjecture: The C-orbit $x, C(x), C(C(x)), \ldots$ of every positive integer x eventually enters the cycle containing 1.

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow$ $26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow$ $4 \rightarrow 2 \rightarrow 1 \cdots$
- Collatz Conjecture: The C-orbit $x, C(x), C(C(x)), \ldots$ of every positive integer x eventually enters the cycle containing 1.
- Can also use $T(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ \frac{3 x+1}{2} & x \text { is odd }\end{array}\right.$.

The $3 x+1$ conjecture (Collatz conjecture)

- Famous open problem stated in 1929 by Collatz.
- Define $C: \mathbb{N} \rightarrow \mathbb{N}$ by $C(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ 3 x+1 & x \text { is odd }\end{array}\right.$.
- What is the long-term behaviour of C as a discrete dynamical system?
- Example: $9 \rightarrow 14 \rightarrow 7 \quad \rightarrow 11 \quad \rightarrow 17 \rightarrow$ $26 \rightarrow 13 \quad \rightarrow 20 \rightarrow 10 \rightarrow 5 \quad \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$ $\rightarrow 2 \rightarrow 1 \ldots$
- Collatz Conjecture: The C-orbit $x, C(x), C(C(x)), \ldots$ of every positive integer x eventually enters the cycle containing 1.
- Can also use $T(x)=\left\{\begin{array}{ll}x / 2 & x \text { is even } \\ \frac{3 x+1}{2} & x \text { is odd }\end{array}\right.$.

The Collatz graph \mathcal{G}

Two smaller conjectures

- The Nontrivial Cycles conjecture: There are no T-cycles of positive integers other than the cycle $\overline{1,2}$.
- The Divergent Orbits conjecture: The T-orbit of every positive integer is bounded and hence eventually cyclic.
- Together, these suffice to prove the Collatz conjecture.

Two smaller conjectures

- The Nontrivial Cycles conjecture: There are no T-cycles of positive integers other than the cycle $\overline{1,2}$.
- The Divergent Orbits conjecture: The T-orbit of every positive integer is bounded and hence eventually cyclic.
- Together, these suffice to prove the Collatz conjecture.
- Both still unsolved.

Starting point: sufficiency of arithmetic progressions

- Two positive integers merge if their orbits eventually meet.

Starting point: sufficiency of arithmetic progressions

- Two positive integers merge if their orbits eventually meet.
- A set of S positive integers is sufficient if every positive integer merges with an element of S.

Starting point: sufficiency of arithmetic progressions

- Two positive integers merge if their orbits eventually meet.
- A set of S positive integers is sufficient if every positive integer merges with an element of S.
- Theorem. (K. M. Monks, 2006.) Every arithmetic sequence is sufficient.

Starting point: sufficiency of arithmetic progressions

- Two positive integers merge if their orbits eventually meet.
- A set of S positive integers is sufficient if every positive integer merges with an element of S.
- Theorem. (K. M. Monks, 2006.) Every arithmetic sequence is sufficient.
- In fact, Monks shows that every positive integer relatively prime to 3 can be back-traced to an element of a given arithmetic sequence.

Starting point: sufficiency of arithmetic progressions

- Two positive integers merge if their orbits eventually meet.
- A set of S positive integers is sufficient if every positive integer merges with an element of S.
- Theorem. (K. M. Monks, 2006.) Every arithmetic sequence is sufficient.
- In fact, Monks shows that every positive integer relatively prime to 3 can be back-traced to an element of a given arithmetic sequence.
- Every integer congruent to 0 mod 3 forward-traces to an integer relatively prime to 3 , at which point the orbit contains no more multiples of 3 .

The Collatz graph \mathcal{G}

The pruned Collatz graph $\widetilde{\mathcal{G}}$

Natural questions arising from the sufficiency of arithmetic progressions

1. Can we find a sufficient set with asymptotic density 0 in \mathbb{N} ?

Natural questions arising from the sufficiency of arithmetic progressions

1. Can we find a sufficient set with asymptotic density 0 in \mathbb{N} ?
2. For a given $x \in \mathbb{N} \backslash 3 \mathbb{N}$, how "close" is the nearest element of $\{a+b N\}_{N \geq 0}$ that we can back-trace to?

Natural questions arising from the sufficiency of arithmetic progressions

1. Can we find a sufficient set with asymptotic density 0 in \mathbb{N} ?
2. For a given $x \in \mathbb{N} \backslash 3 \mathbb{N}$, how "close" is the nearest element of $\{a+b N\}_{N \geq 0}$ that we can back-trace to?
3. Starting from $x=1$, can we chain these short back-tracing paths together to find which integers are in an infinite back-tracing path from 1 ?

Natural questions arising from the sufficiency of arithmetic progressions

1. Can we find a sufficient set with asymptotic density 0 in \mathbb{N} ?
2. For a given $x \in \mathbb{N} \backslash 3 \mathbb{N}$, how "close" is the nearest element of $\{a+b N\}_{N \geq 0}$ that we can back-trace to?
3. Starting from $x=1$, can we chain these short back-tracing paths together to find which integers are in an infinite back-tracing path from 1 ?
4. In which infinite back-tracing paths does a given arithmetic sequence $\{a+b N\}$ occur?

Attempting the first question

A family of sparse sufficient sets

Proposition (Monks, Monks, Monks, M.)
For any function $f: \mathbb{N} \rightarrow \mathbb{N}$ and any positive integers a and b,

$$
\left\{2^{f(n)}(a+b n) \mid n \in \mathbb{N}\right\}
$$

is a sufficient set.
Proof.
Any positive integer x merges with some number of the form $a+b N$. Then $2^{f(N)}(a+b N)$, which maps to $a+b N$ after $f(N)$ iterations of T, also merges with x.

Corollary
For any fixed a and b, the sequence $(a+b n) \cdot 2^{n}$ is a sufficient set with asymptotic density zero in the positive integers.

Natural questions arising from the sufficiency of arithmetic progressions

1. Can we find a sufficient set with asymptotic density 0 in \mathbb{N} ?
2. For a given $x \in \mathbb{N} \backslash 3 \mathbb{N}$, how "close" is the nearest element of $\{a+b N\}_{N \geq 0}$ that we can back-trace to?
3. Starting from $x=1$, can we chain these short back-tracing paths together to find which integers are in an infinite back-tracing path from 1 ?
4. In which infinite back-tracing paths does a given arithmetic sequence $\{a+b N\}$ occur?

Natural questions arising from the sufficiency of arithmetic progressions

1. Can we find a sufficient set with asymptotic density 0 in \mathbb{N} ? Yes!
2. For a given $x \in \mathbb{N} \backslash 3 \mathbb{N}$, how "close" is the nearest element of $\{a+b N\}_{N \geq 0}$ that we can back-trace to?
3. Starting from $x=1$, can we chain these short back-tracing paths together to find which integers are in an infinite back-tracing path from 1 ?
4. In which infinite back-tracing paths does a given arithmetic sequence $\{a+b N\}$ occur?

Attempting the second question

Efficient back-tracing

- Define the length of a finite back-tracing path to be the number of red arrows in the path.

Efficient back-tracing

- Define the length of a finite back-tracing path to be the number of red arrows in the path.
- Want to find the shortest back-tracing path to an element of the arithmetic sequence $a \bmod b$ for various a and b.

Efficient back-tracing

- Define the length of a finite back-tracing path to be the number of red arrows in the path.
- Want to find the shortest back-tracing path to an element of the arithmetic sequence $a \bmod b$ for various a and b.
- Consider three cases: when b is a power of 2 , a power of 3 , or relatively prime to 2 and 3 .

Efficient back-tracing

Proposition

Let $b \in \mathbb{N}$ with $\operatorname{gcd}(b, 6)=1$, and let $a<b$ be a nonnegative integer. Let e be the order of $\frac{3}{2}$ modulo b. Then any $x \in \mathbb{N} \backslash 3 \mathbb{N}$ can be back-traced to an integer congruent to $a \bmod b$ via a path of length at most $(b-1) e$.

Efficient back-tracing

Proposition

Let $b \in \mathbb{N}$ with $\operatorname{gcd}(b, 6)=1$, and let $a<b$ be a nonnegative integer. Let e be the order of $\frac{3}{2}$ modulo b. Then any $x \in \mathbb{N} \backslash 3 \mathbb{N}$ can be back-traced to an integer congruent to $a \bmod b$ via a path of length at most $(b-1) e$.

Proposition

Let $n \geq 1$ and $a<2^{n}$ be nonnegative integers. Then any $x \in \mathbb{N} \backslash 3 \mathbb{N}$ can be back-traced to an integer congruent to a mod 2^{n} using a path of length at most $\left\lfloor\log _{2} a+1\right\rfloor$.

Efficient back-tracing

Proposition

Let $m \geq 1$ and $a<3^{m}$ be nonnegative integers. Then any $x \in \mathbb{N} \backslash 3 \mathbb{N}$ can be back-traced to infinitely many odd elements of $a+3^{m} \mathbb{N}$ via an admissible sequence of length 1 .

Efficient back-tracing

Proposition

Let $m \geq 1$ and $a<3^{m}$ be nonnegative integers. Then any $x \in \mathbb{N} \backslash 3 \mathbb{N}$ can be back-traced to infinitely many odd elements of $a+3^{m} \mathbb{N}$ via an admissible sequence of length 1 .
Working $\bmod 3^{m}$ is particularly nice because 2 is a primitive root $\bmod 3^{m}$. What about when 2 is a primitive root $\bmod b$?

Efficient back-tracing

Proposition

Let $m \geq 1$ and $a<3^{m}$ be nonnegative integers. Then any $x \in \mathbb{N} \backslash 3 \mathbb{N}$ can be back-traced to infinitely many odd elements of $a+3^{m} \mathbb{N}$ via an admissible sequence of length 1 .
Working $\bmod 3^{m}$ is particularly nice because 2 is a primitive root $\bmod 3^{m}$. What about when 2 is a primitive root $\bmod b$?

Proposition

Let $b \in \mathbb{N}$ with $\operatorname{gcd}(b, 6)=1$ such that 2 is a primitive root mod b. Let a be such that $0 \leq a \leq b$ and $\operatorname{gcd}(a, b)=1$. From any $x \in \mathbb{N} \backslash 3 \mathbb{N}$, there exists a back-tracing path of length at most 1 to an integer $y \in \mathbb{N} \backslash 3 \mathbb{N}$ with $y \equiv a(\bmod b)$.

Natural questions arising from the sufficiency of arithmetic progressions

1. Can we find a sufficient set with asymptotic density 0 in \mathbb{N} ? Yes!
2. For a given $x \in \mathbb{N} \backslash 3 \mathbb{N}$, how "close" is the nearest element of $\{a+b N\}_{N \geq 0}$ that we can back-trace to?
3. Starting from $x=1$, can we chain these short back-tracing paths together to find which integers are in an infinite back-tracing path from 1 ?
4. In which infinite back-tracing paths does a given arithmetic sequence $\{a+b N\}$ occur?

Natural questions arising from the sufficiency of arithmetic progressions

1. Can we find a sufficient set with asymptotic density 0 in \mathbb{N} ? Yes!
2. For a given $x \in \mathbb{N} \backslash 3 \mathbb{N}$, how "close" is the nearest element of $\{a+b N\}_{N \geq 0}$ that we can back-trace to?
Pretty close, depending on b.
3. Starting from $x=1$, can we chain these short back-tracing paths together to find which integers are in an infinite back-tracing path from 1 ?
4. In which infinite back-tracing paths does a given arithmetic sequence $\{a+b N\}$ occur?

Attempting the third question

Infinite back-tracing

- An infinite back-tracing sequence is a sequence of the form

$$
x_{0}, x_{1}, x_{2}, \ldots
$$

for which $T\left(x_{i}\right)=x_{i-1}$ for all $i \geq 1$.

Infinite back-tracing

- An infinite back-tracing sequence is a sequence of the form

$$
x_{0}, x_{1}, x_{2}, \ldots
$$

for which $T\left(x_{i}\right)=x_{i-1}$ for all $i \geq 1$.

- An infinite back-tracing parity vector is the binary sequence formed by taking an infinite back-tracing sequence mod 2.

Infinite back-tracing

- An infinite back-tracing sequence is a sequence of the form

$$
x_{0}, x_{1}, x_{2}, \ldots
$$

for which $T\left(x_{i}\right)=x_{i-1}$ for all $i \geq 1$.

- An infinite back-tracing parity vector is the binary sequence formed by taking an infinite back-tracing sequence mod 2.
- We think of an infinite back-tracing parity vector as an element of \mathbb{Z}_{2}, the ring of 2-adic integers.

Infinite back-tracing

- An infinite back-tracing sequence is a sequence of the form

$$
x_{0}, x_{1}, x_{2}, \ldots
$$

for which $T\left(x_{i}\right)=x_{i-1}$ for all $i \geq 1$.

- An infinite back-tracing parity vector is the binary sequence formed by taking an infinite back-tracing sequence mod 2.
- We think of an infinite back-tracing parity vector as an element of \mathbb{Z}_{2}, the ring of 2-adic integers.
- Some are simple to describe: those that end in $\overline{0}$. These are the positive integers $\mathbb{N} \subset \mathbb{Z}_{2}$.

Infinite back-tracing

- An infinite back-tracing sequence is a sequence of the form

$$
x_{0}, x_{1}, x_{2}, \ldots
$$

for which $T\left(x_{i}\right)=x_{i-1}$ for all $i \geq 1$.

- An infinite back-tracing parity vector is the binary sequence formed by taking an infinite back-tracing sequence mod 2.
- We think of an infinite back-tracing parity vector as an element of \mathbb{Z}_{2}, the ring of 2-adic integers.
- Some are simple to describe: those that end in $\overline{0}$. These are the positive integers $\mathbb{N} \subset \mathbb{Z}_{2}$.
- When there are infinitely many 1's, they are much harder to describe.

Uniqueness of infinite back-tracing vectors

Proposition

Let $x \in \mathbb{N} \backslash 3 \mathbb{N}$, and suppose v is a back-tracing parity vector for x containing infinitely many 1 's. If v is also a back-tracing parity vector for y, then $x=y$.

Uniqueness of infinite back-tracing vectors

Proposition

Let $x \in \mathbb{N} \backslash 3 \mathbb{N}$, and suppose v is a back-tracing parity vector for x containing infinitely many 1 's. If v is also a back-tracing parity vector for y, then $x=y$.

- Idea of proof: The first m occurrences of 1 in v determine the congruence class of $x \bmod 3^{m}$.

Uniqueness of infinite back-tracing vectors

Proposition

Let $x \in \mathbb{N} \backslash 3 \mathbb{N}$, and suppose v is a back-tracing parity vector for x containing infinitely many 1 's. If v is also a back-tracing parity vector for y, then $x=y$.

- Idea of proof: The first m occurrences of 1 in v determine the congruence class of $x \bmod 3^{m}$.
- In the forward direction, the first n digits of the T-orbit of x taken $\bmod 2$ determine the congruence class of $x \bmod 2^{n}$.

Uniqueness of infinite back-tracing vectors

Proposition

Let $x \in \mathbb{N} \backslash 3 \mathbb{N}$, and suppose v is a back-tracing parity vector for x containing infinitely many 1 's. If v is also a back-tracing parity vector for y, then $x=y$.

- Idea of proof: The first m occurrences of 1 in v determine the congruence class of $x \bmod 3^{m}$.
- In the forward direction, the first n digits of the T-orbit of x taken $\bmod 2$ determine the congruence class of $x \bmod 2^{n}$.
- (Bernstein, 1994.) This gives a map $\Phi: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ that sends v to the unique 2-adic whose T-orbit, taken $\bmod 2$, is v.

Uniqueness of infinite back-tracing vectors

Proposition

Let $x \in \mathbb{N} \backslash 3 \mathbb{N}$, and suppose v is a back-tracing parity vector for x containing infinitely many 1 's. If v is also a back-tracing parity vector for y, then $x=y$.

- Idea of proof: The first m occurrences of 1 in v determine the congruence class of $x \bmod 3^{m}$.
- In the forward direction, the first n digits of the T-orbit of x taken $\bmod 2$ determine the congruence class of $x \bmod 2^{n}$.
- (Bernstein, 1994.) This gives a map $\Phi: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ that sends v to the unique 2-adic whose T-orbit, taken mod 2 , is v.
- Similarly, we can define a map $\Psi: \mathbb{Z}_{2} \backslash N \rightarrow \mathbb{Z}_{3}$ that sends v to the unique 3 -adic having v as an infinite back-tracing parity vector.

What are the back-tracing parity vectors starting from positive integers?

Proposition

Every back-tracing parity vector of a positive integer x, considered as a 2-adic integer, is either:

What are the back-tracing parity vectors starting from positive integers?

Proposition

Every back-tracing parity vector of a positive integer x, considered as a 2-adic integer, is either:
(a) a positive integer (ends in $\overline{0}$),

What are the back-tracing parity vectors starting from positive integers?

Proposition

Every back-tracing parity vector of a positive integer x, considered as a 2-adic integer, is either:
(a) a positive integer (ends in $\overline{0}$),
(b) immediately periodic (its binary expansion has the form $\overline{v_{0} \ldots v_{k}}$ where each $v_{i} \in\{0,1\}$), or

What are the back-tracing parity vectors starting from positive integers?

Proposition

Every back-tracing parity vector of a positive integer x, considered as a 2-adic integer, is either:
(a) a positive integer (ends in $\overline{0}$),
(b) immediately periodic (its binary expansion has the form $\overline{v_{0} \ldots v_{k}}$ where each $v_{i} \in\{0,1\}$), or
(c) irrational.

What are the back-tracing parity vectors starting from positive integers?

Proposition

Every back-tracing parity vector of a positive integer x, considered as a 2-adic integer, is either:
(a) a positive integer (ends in $\overline{0}$),
(b) immediately periodic (its binary expansion has the form $\overline{v_{0} \ldots v_{k}}$ where each $v_{i} \in\{0,1\}$), or
(c) irrational.

Can we write down an irrational one?

What are the back-tracing parity vectors starting from positive integers?

Proposition

Every back-tracing parity vector of a positive integer x, considered as a 2-adic integer, is either:
(a) a positive integer (ends in $\overline{0}$),
(b) immediately periodic (its binary expansion has the form $\overline{v_{0} \ldots v_{k}}$ where each $v_{i} \in\{0,1\}$), or
(c) irrational.

Can we write down an irrational one?
The best we can do is a recursive construction, such as the greedy back-tracing vector that follows red whenever possible. Even this is hard to describe explicitly.

Another look at $\widetilde{\mathcal{G}}$

Natural questions arising from the sufficiency of arithmetic progressions

1. Can we find a sufficient set with asymptotic density 0 in \mathbb{N} ? Yes!
2. For a given $x \in \mathbb{N} \backslash 3 \mathbb{N}$, how "close" is the nearest element of $\{a+b N\}_{N \geq 0}$ that we can back-trace to?
Pretty close, depending on b.
3. Starting from $x=1$, can we chain these short back-tracing paths together to find which integers are in an infinite back-tracing path from 1 ?
4. In which infinite back-tracing paths does a given arithmetic sequence $\{a+b N\}$ occur?

Natural questions arising from the sufficiency of arithmetic progressions

1. Can we find a sufficient set with asymptotic density 0 in \mathbb{N} ? Yes!
2. For a given $x \in \mathbb{N} \backslash 3 \mathbb{N}$, how "close" is the nearest element of $\{a+b N\}_{N \geq 0}$ that we can back-trace to?
Pretty close, depending on b.
3. Starting from $x=1$, can we chain these short back-tracing paths together to find which integers are in an infinite back-tracing path from 1 ?
This turns out to be very hard to find explicitly.
4. In which infinite back-tracing paths does a given arithmetic sequence $\{a+b N\}$ occur?

Attempting the fourth question

Strong sufficiency in the reverse direction

Theorem
Let $x \in \mathbb{N} \backslash 3 \mathbb{N}$. Then every infinite back-tracing sequence from x contains an element congruent to $2 \bmod 9$.

Strong sufficiency in the reverse direction

Theorem
Let $x \in \mathbb{N} \backslash 3 \mathbb{N}$. Then every infinite back-tracing sequence from x contains an element congruent to 2 mod 9 .

We say that the set of positive integers congruent to $2 \bmod 9$ is strongly sufficient in the reverse direction.

Proof by picture: the pruned Collatz graph mod 9.

Proof by picture: the pruned Collatz graph mod 9 .

Strong sufficiency in the forward direction

- A similar argument shows that $2 \bmod 9$ is strongly sufficient in the forward direction: the T-orbit of every positive integer contains an element congruent to $2 \bmod 9$!

Strong sufficiency in the forward direction

- A similar argument shows that 2 mod 9 is strongly sufficient in the forward direction: the T-orbit of every positive integer contains an element congruent to 2 mod 9 !
- A set S is strongly sufficient in the forward direction if every divergent orbit and nontrivial cycle of positive integers intersects S.

Strong sufficiency in the forward direction

- A similar argument shows that 2 mod 9 is strongly sufficient in the forward direction: the T-orbit of every positive integer contains an element congruent to 2 mod 9 !
- A set S is strongly sufficient in the forward direction if every divergent orbit and nontrivial cycle of positive integers intersects S.
- A set S is strongly sufficient in the reverse direction if every infinite back-tracing sequence containing infinitely many odd elements, other than $\overline{1,2}$, intersects S.

Strong sufficiency in the forward direction

- A similar argument shows that $2 \bmod 9$ is strongly sufficient in the forward direction: the T-orbit of every positive integer contains an element congruent to 2 mod 9 !
- A set S is strongly sufficient in the forward direction if every divergent orbit and nontrivial cycle of positive integers intersects S.
- A set S is strongly sufficient in the reverse direction if every infinite back-tracing sequence containing infinitely many odd elements, other than $\overline{1,2}$, intersects S.
- S is strongly sufficient if it is strongly sufficient in both directions.

Strong sufficiency in the forward direction

- A similar argument shows that $2 \bmod 9$ is strongly sufficient in the forward direction: the T-orbit of every positive integer contains an element congruent to 2 mod 9 !
- A set S is strongly sufficient in the forward direction if every divergent orbit and nontrivial cycle of positive integers intersects S.
- A set S is strongly sufficient in the reverse direction if every infinite back-tracing sequence containing infinitely many odd elements, other than $\overline{1,2}$, intersects S.
- S is strongly sufficient if it is strongly sufficient in both directions.
- How this helps: Suppose we can show that, for instance, the set of integers congruent to $1 \bmod 2^{n}$ is strongly sufficient for every n. Then the nontrivial cycles conjecture is true!

The graphs Γ_{k}

Definition

For $k \in \mathbb{N}$, define Γ_{k} to be the two-colored directed graph on $\mathbb{Z} / k \mathbb{Z}$ having a black arrow from r to s if and only if $\exists x, y \in \mathbb{N}$ with

$$
x \equiv r \text { and } y \equiv s \quad(\bmod k)
$$

with $x / 2=y$, and a red arrow from r to s if there are such an x and y with $(3 x+1) / 2=y$.

Example: Γ_{9}

Example: Γ_{7}

A criterion for strong sufficiency

Theorem
Let $n \in \mathbb{N}$, and let a_{1}, \ldots, a_{k} be k distinct residues $\bmod n$.

A criterion for strong sufficiency

Theorem
Let $n \in \mathbb{N}$, and let a_{1}, \ldots, a_{k} be k distinct residues $\bmod n$.

- Let Γ_{n}^{\prime} be the vertex minor of Γ_{n} formed by deleting the nodes labeled a_{1}, \ldots, a_{k} and all arrows connected to them.

A criterion for strong sufficiency

Theorem

Let $n \in \mathbb{N}$, and let a_{1}, \ldots, a_{k} be k distinct residues mod n.

- Let Γ_{n}^{\prime} be the vertex minor of Γ_{n} formed by deleting the nodes labeled a_{1}, \ldots, a_{k} and all arrows connected to them.
- Let $\Gamma_{n}^{\prime \prime}$ be the graph formed from Γ_{n}^{\prime} by deleting any edge which is not contained in any cycle of Γ_{n}^{\prime}.

A criterion for strong sufficiency

Theorem

Let $n \in \mathbb{N}$, and let a_{1}, \ldots, a_{k} be k distinct residues mod n.

- Let Γ_{n}^{\prime} be the vertex minor of Γ_{n} formed by deleting the nodes labeled a_{1}, \ldots, a_{k} and all arrows connected to them.
- Let $\Gamma_{n}^{\prime \prime}$ be the graph formed from Γ_{n}^{\prime} by deleting any edge which is not contained in any cycle of Γ_{n}^{\prime}.
If $\Gamma_{n}^{\prime \prime}$ is a disjoint union of cycles and isolated vertices, and each of the cycles have length less than 630,138, 897, then the set

$$
a_{1}, \ldots, a_{k} \bmod n
$$

is strongly sufficient.

A list of strongly sufficient sets

$0 \bmod 2$	1, $4 \bmod 9$	1, 2, 6 mod 7	$3,4,7 \mathrm{mod} 10$	2, 7, $8 \bmod 11$	4, 5, 12 mod 14
1 mod 2	1,8 mod 9	0,1, $3 \bmod 8$	3, 6, 7 mod 10	3, 4, 5 mod 11	4, 6, 11 mod 14
1 mod 3	4,5 mod 9	0, 1, 6 mod 8	3, 7, 8 mod 10	3, 4, 8 mod 11	4, 11, 12 mod 14
$2 \bmod 3$	4,7 mod 9	2, 4, 7 mod 8	4, 5, 7 mod 10	3, 4, 9 mod 11	6, 7, 8 mod 14
1 mod 4	5, $8 \bmod 9$	2, 5, 7 mod 8	5, 6, 7 mod 10	$3,4,10 \mathrm{mod} 11$	6, 8, 9 mod 14
$2 \bmod 4$	7, 8 mod 9	0, 1, 4 mod 10	5, 7, 8 mod 10	3, 6, 10 mod 11	7, 8, 12 mod 14
$2 \bmod 6$	4,7 mod 11	0, 1, 6 mod 10	$0,1,5 \bmod 11$	1, 7, 10 mod 12	8, 9, 12 mod 14
$2 \bmod 9$	5, 6 mod 11	0, 1, $8 \bmod 10$	0, 1, 8 mod 11	1, 8, 11 mod 12	1,5,7 mod 15
0, 3 mod 4	6,8 mod 11	0, 2, 4 mod 10	0, 1, 9 mod 11	2, 4, 11 mod 12	1, 5, 11 mod 15
0, 1 mod 5	6,9 mod 11	0, 2, 6 mod 10	0, 2, 5 mod 11	4, 7, 10 mod 12	1, 5, 13 mod 15
0,2 mod 5	1,5 mod 12	0,2, 7 mod 10	0, 2, 8 mod 11	1, 3, 4 mod 13	1, 5, 14 mod 15
1, $3 \bmod 5$	2,5 mod 12	0, 2, 8 mod 10	0, 4, 5 mod 11	1, 4, 6 mod 13	1, 7, $8 \bmod 15$
2, $3 \bmod 5$	2, 8 mod 12	0, 4, 7 mod 10	0, 4, 8 mod 11	1, 8, 11 mod 13	1, 8, 13 mod 15
1,4 mod 6	2, 10 mod 12	0, 6, 7 mod 10	0, 4, 9 mod 11	2, 3, 7 mod 13	1, 8, $14 \bmod 15$
1,5 mod 6	4,5 mod 12	0, 7, 8 mod 10	1, 2, 7 mod 11	2, 6, 7 mod 13	1, 10, 11 mod 15
4,5 mod 6	5,8 mod 12	1, 3, 4 mod 10	$1,3,5 \mathrm{mod} 11$	$3,4,9 \mathrm{mod} 13$	1, 10, 13 mod 15
2, $3 \bmod 7$	7,8 mod 12	1, 3, $6 \bmod 10$	1, 3, 8 mod 11	3, 4, 10 mod 13	2, 5, 7 mod 15
2,5 mod 7	8, 11 mod 15	1, 3, $8 \bmod 10$	1, 3, 9 mod 11	3, 7, 10 mod 13	2, 5, 11 mod 15
3, 4 mod 7	$1,8 \mathrm{mod} 18$	1, 4, 5 mod 10	1, 3, 10 mod 11	$3,10,11 \bmod 13$	2,5,13 mod 15
4,5 mod 7	2, 8 mod 18	1,5,6 mod 10	1, 5, 7 mod 11	4, 6, 9 mod 13	2, 5, 14 mod 15
4, $6 \bmod 7$	2, 11 mod 18	1, 5, 8 mod 10	1, 7, 8 mod 11	4, 6, 10 mod 13	2, 7, 8 mod 15
1, 4 mod 8	7,8 mod 18	2, 3, 4 mod 10	1, 7, 9 mod 11	4, 8, 9 mod 13	2, 7, $10 \bmod 15$
1,5 mod 8	$8,10 \mathrm{mod} 18$	2, 3, $6 \bmod 10$	2, 3, 5 mod 11	6, 7, 10 mod 13	2, 8, 13 mod 15
2, $3 \bmod 8$	$8,14 \mathrm{mod} 18$	2, 3, 7 mod 10	2, 3, 7 mod 11	$6,10,11 \mathrm{mod} 13$	2, 8, 14 mod 15
2, $6 \bmod 8$	$10,11 \mathrm{mod} 18$	2, 3, 8 mod 10	2, 3, 8 mod 11	7, 8, 9 mod 13	2, 10, 11 mod 15
3, 4 mod 8	5,11 mod 21	2, 4, 5 mod 10	2, 3, 9 mod 11	8, 9, 11 mod 13	2, 10, 13 mod 15
3, $5 \bmod 8$	0, 1, 3 mod 7	2, 5, 6 mod 10	2, 3, 10 mod 11	$8,10,11 \mathrm{mod} 13$	2, 10, 14 mod 15
4, 6 mod 8	0, 1, 5 mod 7	2, 5, 7 mod 10	2, 5, 7 mod 11	3, 4, 10 mod 14	4, 5, 11 mod 15
5, $6 \bmod 8$	0, 1, $6 \bmod 7$	2, 5, 8 mod 10	2, 6, 7 mod 11	4, 5, $6 \bmod 14$	4, 10, 11 mod 15

Natural questions arising from the sufficiency of arithmetic progressions

1. Can we find a sufficient set with asymptotic density 0 in \mathbb{N} ? Yes!
2. For a given $x \in \mathbb{N} \backslash 3 \mathbb{N}$, how "close" is the nearest element of $\{a+b N\}_{N \geq 0}$ that we can back-trace to?
Pretty close, depending on b.
3. Starting from $x=1$, can we chain these short back-tracing paths together to find which integers are in an infinite back-tracing path from 1 ?
This turns out to be very hard to find explicitly.
4. In which infinite back-tracing paths does a given arithmetic sequence $\{a+b N\}$ occur?

Natural questions arising from the sufficiency of arithmetic progressions

1. Can we find a sufficient set with asymptotic density 0 in \mathbb{N} ? Yes!
2. For a given $x \in \mathbb{N} \backslash 3 \mathbb{N}$, how "close" is the nearest element of $\{a+b N\}_{N \geq 0}$ that we can back-trace to?
Pretty close, depending on b.
3. Starting from $x=1$, can we chain these short back-tracing paths together to find which integers are in an infinite back-tracing path from 1 ?
This turns out to be very hard to find explicitly.
4. In which infinite back-tracing paths does a given arithmetic sequence $\{a+b N\}$ occur?
We're still working on a general answer, but we know that many (such as $2 \bmod 9$) occur in all of them!

Question 5.

Which deeper structure theorems about T-orbits can be used to improve on these results?

Background on percentage of 1's in a T-orbit

- Theorem. (Eliahou, 1993.) If a T-cycle of positive integers of length n contains r odd positive integers (and $n-r$ even positive integers), and has minimal element m and maximal element M, then

$$
\frac{\ln (2)}{\ln \left(3+\frac{1}{m}\right)} \leq \frac{r}{n} \leq \frac{\ln (2)}{\ln \left(3+\frac{1}{M}\right)}
$$

Background on percentage of 1's in a T-orbit

- Theorem. (Eliahou, 1993.) If a T-cycle of positive integers of length n contains r odd positive integers (and $n-r$ even positive integers), and has minimal element m and maximal element M, then

$$
\frac{\ln (2)}{\ln \left(3+\frac{1}{m}\right)} \leq \frac{r}{n} \leq \frac{\ln (2)}{\ln \left(3+\frac{1}{M}\right)}
$$

- Theorem. (Lagarias, 1985.) Similarly, the percentage of 1's in any divergent orbit is at least $\ln (2) / \ln (3) \approx .6309$.

Background on percentage of 1's in a T-orbit

- Theorem. (Eliahou, 1993.) If a T-cycle of positive integers of length n contains r odd positive integers (and $n-r$ even positive integers), and has minimal element m and maximal element M, then

$$
\frac{\ln (2)}{\ln \left(3+\frac{1}{m}\right)} \leq \frac{r}{n} \leq \frac{\ln (2)}{\ln \left(3+\frac{1}{M}\right)}
$$

- Theorem. (Lagarias, 1985.) Similarly, the percentage of 1's in any divergent orbit is at least $\ln (2) / \ln (3) \approx .6309$.
- With these facts, we can show 20 mod 27 is strongly sufficient in the forward direction.

Looking mod 27

Avoiding $20 \bmod 27$

Avoiding $20 \bmod 27$

Question 5.

Which deeper structure theorems about T-orbits can be used to improve on these results?

- The percentage of 1's in any divergent orbit or nontrivial cycle is at least 63%. This can be used to obtain more strongly sufficient sets.

Background on T as a 2-adic dynamical system

Background on T as a 2-adic dynamical system

- Extend T to a map $\mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ where \mathbb{Z}_{2} is the ring of 2-adic integers. Here, $3=110000 \cdots$.

Background on T as a 2-adic dynamical system

- Extend T to a map $\mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ where \mathbb{Z}_{2} is the ring of 2-adic integers. Here, $3=110000 \cdots$.
- Parity vector function: $\Phi^{-1}: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ sends x to the T-orbit of x taken $\bmod 2$.

Background on T as a 2-adic dynamical system

- Extend T to a map $\mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ where \mathbb{Z}_{2} is the ring of 2-adic integers. Here, $3=110000 \cdots$.
- Parity vector function: $\Phi^{-1}: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ sends x to the T-orbit of x taken mod 2 .
- Shift map: $\sigma: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ sends $a_{0} a_{1} a_{2} a_{3} \ldots$ to $a_{1} a_{2} a_{3} \ldots$

Background on T as a 2-adic dynamical system

- Extend T to a map $\mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ where \mathbb{Z}_{2} is the ring of 2-adic integers. Here, $3=110000 \cdots$.
- Parity vector function: $\Phi^{-1}: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ sends x to the T-orbit of x taken $\bmod 2$.
- Shift map: $\sigma: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ sends $a_{0} a_{1} a_{2} a_{3} \ldots$ to $a_{1} a_{2} a_{3} \ldots$
- Theorem. (Bernstein, Lagarias.) Inverse parity vector function

$$
\Phi: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}
$$

is well defined, and

$$
T=\Phi \circ \sigma \circ \Phi^{-1} .
$$

Background on T as a 2-adic dynamical system

- In 1969, Hedlund classified the continuous endomorphisms of σ : functions $f: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ satisfying $f \circ \sigma=\sigma \circ f$.

Background on T as a 2-adic dynamical system

- In 1969, Hedlund classified the continuous endomorphisms of σ : functions $f: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ satisfying $f \circ \sigma=\sigma \circ f$.
- In particular, the only two automorphisms (bijective endomorphisms) are the identity map and the bit complement map V.
- $V(100100100 \ldots)=011011011 \ldots$

Background on T as a 2-adic dynamical system

- In 1969, Hedlund classified the continuous endomorphisms of σ : functions $f: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ satisfying $f \circ \sigma=\sigma \circ f$.
- In particular, the only two automorphisms (bijective endomorphisms) are the identity map and the bit complement map V.
- $V(100100100 \ldots)=011011011 \ldots$
- In 2004, K. G. Monks and J. Yasinski used V to construct the unique nontrivial autoconjugacy of T :

$$
\Omega:=\Phi \circ V \circ \Phi^{-1} .
$$

The autoconjugacy Ω

Working with Ω

- Ω is solenoidal, that is, it induces a permutation on $\mathbb{Z} / 2^{n} \mathbb{Z}$ for all n.

Working with Ω

- Ω is solenoidal, that is, it induces a permutation on $\mathbb{Z} / 2^{n} \mathbb{Z}$ for all n.
- Ω is also an involution that pairs evens with odds.

Working with Ω

- Ω is solenoidal, that is, it induces a permutation on $\mathbb{Z} / 2^{n} \mathbb{Z}$ for all n.
- Ω is also an involution that pairs evens with odds.
- Example:

$$
\begin{aligned}
\Omega(110 \cdots) & =\Phi \circ V \circ \Phi^{-1}(110 \cdots) \\
& =\Phi \circ V(110 \cdots) \\
& =\Phi(001 \cdots) \\
& =001 \cdots
\end{aligned}
$$

Working with Ω

- Ω is solenoidal, that is, it induces a permutation on $\mathbb{Z} / 2^{n} \mathbb{Z}$ for all n.
- Ω is also an involution that pairs evens with odds.
- Example:

$$
\begin{aligned}
\Omega(110 \cdots) & =\Phi \circ V \circ \Phi^{-1}(110 \cdots) \\
& =\Phi \circ V(110 \cdots) \\
& =\Phi(001 \cdots) \\
& =001 \cdots
\end{aligned}
$$

- We say that, $\bmod 8, \Omega(3)=4$.

Self-duality in $\Gamma_{2^{n}}$

- Define the color dual of a graph Γ_{k} to be the graph formed by replacing every red arrow with a black arrow and vice versa.

Self-duality in $\Gamma_{2^{n}}$

- Define the color dual of a graph Γ_{k} to be the graph formed by replacing every red arrow with a black arrow and vice versa.
- We say a graph is self-color-dual if it is isomorphic to its color dual up to a re-labeling of the vertices.

Self-duality in $\Gamma_{2^{n}}$

- Define the color dual of a graph Γ_{k} to be the graph formed by replacing every red arrow with a black arrow and vice versa.
- We say a graph is self-color-dual if it is isomorphic to its color dual up to a re-labeling of the vertices.

Theorem
For any $n \geq 1$, the graph $\Gamma_{2^{n}}$ is self-color-dual.

Self-duality in $\Gamma_{2^{n}}$

- Define the color dual of a graph Γ_{k} to be the graph formed by replacing every red arrow with a black arrow and vice versa.
- We say a graph is self-color-dual if it is isomorphic to its color dual up to a re-labeling of the vertices.

Theorem
For any $n \geq 1$, the graph $\Gamma_{2^{n}}$ is self-color-dual.
Idea of proof: if we replace each label a with $\Omega(a) \bmod 2^{n}$, we get the color dual of $\Gamma_{2^{n}}$.

Example: Γ_{8}

Hedlund's other endomorphisms

- Discrete derivative map: $D: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ by $D\left(a_{0} a_{1} a_{2} \ldots\right)=d_{0} d_{1} d_{2} \ldots$ where $d_{i}=\left|a_{i}-a_{i+1}\right|$ for all i.

Hedlund's other endomorphisms

- Discrete derivative map: $D: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ by $D\left(a_{0} a_{1} a_{2} \ldots\right)=d_{0} d_{1} d_{2} \ldots$ where $d_{i}=\left|a_{i}-a_{i+1}\right|$ for all i.
- Then

$$
R:=\Phi \circ D \circ \Phi^{-1}
$$

is an endomorphism of T.

Hedlund's other endomorphisms

- Discrete derivative map: $D: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ by $D\left(a_{0} a_{1} a_{2} \ldots\right)=d_{0} d_{1} d_{2} \ldots$ where $d_{i}=\left|a_{i}-a_{i+1}\right|$ for all i.
- Then

$$
R:=\Phi \circ D \circ \Phi^{-1}
$$

is an endomorphism of T.

- (M., 2009.) R is a two-to-one map, and $R(\Omega(x))=R(x)$ for all x.

Hedlund's other endomorphisms

- Discrete derivative map: $D: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ by $D\left(a_{0} a_{1} a_{2} \ldots\right)=d_{0} d_{1} d_{2} \ldots$ where $d_{i}=\left|a_{i}-a_{i+1}\right|$ for all i.
- Then

$$
R:=\Phi \circ D \circ \Phi^{-1}
$$

is an endomorphism of T.

- (M., 2009.) R is a two-to-one map, and $R(\Omega(x))=R(x)$ for all x.
- Can use R to "fold" $\Gamma_{2^{n+1}}$ onto $\Gamma_{2^{n}}$ by identifying Ω-pairs.

The endomorphism R

Folding $\Gamma_{2^{n+1}}$ onto $\Gamma_{2^{n}}$

Folding Γ_{8} onto Γ_{4}

Folding Γ_{8} onto Γ_{4}

Folding Γ_{8} onto Γ_{4}

Question 5.

Which deeper structure theorems about T-orbits can be used to improve on these results?

- The percentage of 1 's in any divergent orbit or nontrivial cycle is at least 63%. This can be used to obtain more strongly sufficient sets.

Question 5.

Which deeper structure theorems about T-orbits can be used to improve on these results?

- The percentage of 1 's in any divergent orbit or nontrivial cycle is at least 63%. This can be used to obtain more strongly sufficient sets.
- The structure of T as a 2-adic dynamical system can be used to obtain properties of the graphs $\Gamma_{2^{n}}$.

Future work

- In 2010, K. Monks and B. Kraft studied the continuous endomorphisms of T that come from Hedlund's other endomorphisms. Can we use these to obtain further folding results?

Future work

- In 2010, K. Monks and B. Kraft studied the continuous endomorphisms of T that come from Hedlund's other endomorphisms. Can we use these to obtain further folding results?
- How can we make use of self-duality and folding mod powers of 2 to obtain more strongly sufficient sets?

Future work

- In 2010, K. Monks and B. Kraft studied the continuous endomorphisms of T that come from Hedlund's other endomorphisms. Can we use these to obtain further folding results?
- How can we make use of self-duality and folding mod powers of 2 to obtain more strongly sufficient sets?
- Are there other graph-theoretic techniques that would be useful?

Future work

- In 2010, K. Monks and B. Kraft studied the continuous endomorphisms of T that come from Hedlund's other endomorphisms. Can we use these to obtain further folding results?
- How can we make use of self-duality and folding mod powers of 2 to obtain more strongly sufficient sets?
- Are there other graph-theoretic techniques that would be useful?
- Can we find an irrational infinite back-tracing parity vector explicitly, say using algebraic properties?

Acknowledgements

The authors would like to thank Gina Monks for her support throughout this research project.

