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Definitions and Notation

A partition λ of a positive integer n is an
sequence [λ1, λ2, . . . , λm] of positive integers
which satisfy λ1 ≥ λ2 ≥ · · · ≥ λm and
∑m

i=1
λi = n.
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Definitions and Notation

A partition λ of a positive integer n is an
sequence [λ1, λ2, . . . , λm] of positive integers
which satisfy λ1 ≥ λ2 ≥ · · · ≥ λm and
∑m

i=1
λi = n.

5 + 2 + 2 + 1 = 10
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Definitions and Notation

Let λ be a partition of n, and let µ be a
partition of n − k. Then µ is a k-minor of λ if
µi ≤ λi for all i.

[3, 2, 1, 1] is a 3-minor of [5, 2, 2, 1].
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Definitions and Notation

We write Mk(λ) to denote the set of all
k-minors of λ.
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Definitions and Notation

We write Mk(λ) to denote the set of all
k-minors of λ.

M3([5, 2, 2, 1]) = {[5, 2], [5, 1, 1], [4, 2, 1], [4, 1, 1, 1],

[3, 2, 2], [3, 2, 1, 1], [2, 2, 2, 1]}
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The Problem

The Partition Reconstruction Problem:
For which positive integers n ≥ 2 and k can
we always reconstruct a given partition of n
from its set of k-minors?
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The Problem

The Partition Reconstruction Problem:
For which positive integers n ≥ 2 and k can
we always reconstruct a given partition of n
from its set of k-minors?

Formally, for which n and k does
Mk(λ) = Mk(µ) imply λ = µ for any two
partitions λ and µ of n?
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The Problem

The Partition Reconstruction Problem:
For which positive integers n ≥ 2 and k can
we always reconstruct a given partition of n
from its set of k-minors?

Formally, for which n and k does
Mk(λ) = Mk(µ) imply λ = µ for any two
partitions λ and µ of n?

If this property holds, we say reconstructibility
holds.
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The Problem

For example,

M9([5, 2, 2, 1]) = M9([6, 3, 1]) = {[1]}.

We cannot reconstruct partitions of 10 from
their sets of 9-minors.
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The Problem

For example,

M9([5, 2, 2, 1]) = M9([6, 3, 1]) = {[1]}.

We cannot reconstruct partitions of 10 from
their sets of 9-minors.

We can reconstruct them from their 1-minors,
by taking “unions” of distinct 1-minors:
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The Problem

For example,

M9([5, 2, 2, 1]) = M9([6, 3, 1]) = {[1]}.

We cannot reconstruct partitions of 10 from
their sets of 9-minors.

We can reconstruct them from their 1-minors,
by taking “unions” of distinct 1-minors:
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Initial Observations

Clearly, reconstructibility fails for k = n − 1 and holds
for k = 0.
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Initial Observations

Clearly, reconstructibility fails for k = n − 1 and holds
for k = 0.

The set of all 1-minors of all (k− 1)-minors of a partition
is the same as the set of k-minors of that partition.
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Initial Observations

Clearly, reconstructibility fails for k = n − 1 and holds
for k = 0.

The set of all 1-minors of all (k− 1)-minors of a partition
is the same as the set of k-minors of that partition.

Hence, if reconstructibility holds for n and k, it holds for
n and k − 1.
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Initial Observations

Clearly, reconstructibility fails for k = n − 1 and holds
for k = 0.

The set of all 1-minors of all (k− 1)-minors of a partition
is the same as the set of k-minors of that partition.

Hence, if reconstructibility holds for n and k, it holds for
n and k − 1.

This implies that there is a function g(n), defined for
n ≥ 2, such that reconstructibility holds for n and k if
and only if k ≤ g(n).
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Initial Observations

Clearly, reconstructibility fails for k = n − 1 and holds
for k = 0.

The set of all 1-minors of all (k− 1)-minors of a partition
is the same as the set of k-minors of that partition.

Hence, if reconstructibility holds for n and k, it holds for
n and k − 1.

This implies that there is a function g(n), defined for
n ≥ 2, such that reconstructibility holds for n and k if
and only if k ≤ g(n).

What is g?
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Properties ofg

We can show g(n) ≤ g(n − 1) + 1.

AMS/MAA Joint Mathematics Meetings - San Diego, CA – p.8/14



Properties ofg

We can show g(n) ≤ g(n − 1) + 1.

If a partition of the form below appears for n,
then g(n) ≤ m − 2.
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Properties ofg

Define ρ(a) to be the smallest divisor d of a for
which d ≥ √

a.
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Properties ofg

Define ρ(a) to be the smallest divisor d of a for
which d ≥ √

a.

We can show g(n) ≤ ρ(n + 2) − 2.
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Properties ofg

Define ρ(a) to be the smallest divisor d of a for
which d ≥ √

a.

We can show g(n) ≤ ρ(n + 2) − 2.

Recall that g(n) ≤ g(n − 1) + 1.
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Properties ofg

Define ρ(a) to be the smallest divisor d of a for
which d ≥ √

a.

We can show g(n) ≤ ρ(n + 2) − 2.

Recall that g(n) ≤ g(n − 1) + 1.

In fact, the recursion

g(n) = min{g(n − 1) + 1, ρ(n + 2) − 2}

holds for most positive integers n. Some
counterexamples are: n = 5, 12, 21, 32, . . .
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Recursive formula for g(n)

What is this sequence 5, 12, 21, 32, . . .?
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Recursive formula for g(n)

What is this sequence 5, 12, 21, 32, . . .?

Just 5, 12, 21, 32. There are no other
counterexamples!
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Recursive formula for g(n)

What is this sequence 5, 12, 21, 32, . . .?

Just 5, 12, 21, 32. There are no other
counterexamples!

Theorem. Let n > 2 be a positive integer other than 5,
12, 21, and 32. Then

g(n) = min{ρ(n + 2) − 2, g(n − 1) + 1}.

Direct calculation shows that g(2) = 0, g(5) = 1, g(12) =

3, g(21) = 5, g(32) = 7.
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Bounds ong

We can use the recursion to obtain bounds on g:

√
n + 2 − 2 ≤ g(n) ≤

√
n + 2 + 3 4

√
n + 2.
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Bounds ong

We can use the recursion to obtain bounds on g:

√
n + 2 − 2 ≤ g(n) ≤

√
n + 2 + 3 4

√
n + 2.

Equality holds for the lower bound whenever n + 2 is a
perfect square.

n
2 7 14 23 34 47 62 79 98 119 142

5
10
15

g(n)
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The Solution!

We can solve the recursion to obtain an explicit formula
for g.
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The Solution!

We can solve the recursion to obtain an explicit formula
for g.

Theorem. Let n and k be positive integers with k < n.
Then partitions of n can be reconstructed from their
sets of k-minors if and only if k ≤ g(n), where

g(n) = min
0≤t≤n

ρ(n + 2 − t) − 2 + t

for n 6∈ {5, 12, 21, 32}, and g(5) = 1, g(12) = 3,
g(21) = 5, g(32) = 7.
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Applications

The partition reconstruction problem was
posed by J. Siemons and O. Pretzel, in an
attempt to answer the following:
For which n and k can we always reconstruct
an irreducible character of Sn from the
irreducible components of its restriction to the
stabilizer of {1, 2, . . . , k}?
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Applications

The partition reconstruction problem was
posed by J. Siemons and O. Pretzel, in an
attempt to answer the following:
For which n and k can we always reconstruct
an irreducible character of Sn from the
irreducible components of its restriction to the
stabilizer of {1, 2, . . . , k}?

Our main theorem also completely answers
this question: we can do so if and only if
k ≤ g(n).
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