Asynchronously automatic languages and groups

Maria Monks
mm830@cam.ac.uk
January 1, 2011

Abstract
Let \(A \) be a finite alphabet and let \(L \subset (A^*)^n \) be an \(n \)-variable language over \(A \). We say that \(L \) is regular if it is the language accepted by a synchronous \(n \)-tape finite state automaton, it is quasi-regular if it is accepted by an asynchronous \(n \)-tape automaton, and it is weakly regular if it is accepted by a non-deterministic asynchronous \(n \)-tape automaton. We investigate the closure properties of the classes of regular, quasi-regular, and weakly regular languages under first-order logic, and apply these observations to an open decidability problem in automatic group theory.

1 Introduction
A finite state automaton is a machine that reads a string of letters over some finite alphabet one letter at a time, and either accepts or rejects the string after reading it. It has a finite set of internal states, some of which are designated “start states,” some of which are designated “accept states,” and some may be both or neither. The string of letters is written on a tape that is fed to the machine. The machine then reads the letters one at a time from left to right, possibly changing states at each step, where the next state is determined by the current state and the letter being read. When it reaches the end of the string, if the machine is in an accept state, the string is accepted, and otherwise the string is rejected.

There are several different ways to generalize finite state automata to machines that read \(n \) tapes at once for some \(n \geq 1 \), and either accept or reject the entire \(n \)-tuple of strings written on the tapes. A synchronous \(n \)-tape automaton reads all \(n \) tapes simultaneously and at the same speed. An asynchronous \(n \)-tape automaton reads from one tape at a time, and its current state determines which tape it reads from next. A non-deterministic asynchronous \(n \)-tape automaton has its choice of several possible sets of tapes to read from at each step, and reads one letter from each of those tapes before moving to a next state.

The set of accepted strings or \(n \)-tuples of strings is called the language accepted by the automaton. In general, an \(n \)-variable language over a finite alphabet \(A \) is any subset of \((A^*)^n\), where \(A^* \) is the set of finite strings over \(A \). A language is regular if it is accepted by a synchronous automaton, it is quasi-regular if it is accepted by an asynchronous automaton, and it is weakly regular if it is accepted by a non-deterministic asynchronous automaton.

Regular languages are well studied throughout the literature (see [4] for an introduction to the topic), but quasi-regular and weakly regular languages are less understood. In fact, several different definitions of each notion have appeared throughout the literature ([1], [3], [4], [6],). Furthermore, while the relations defined by regular languages are closed under first-order logical operators (union \((\lor)\), intersection \((\land)\), complementation \((\neg)\), and projection \((\exists)\)), we shall see in section 3 that this is not true of quasi-regular or weakly regular languages.
Regular and quasi-regular languages are commonly used to study finitely presented groups, by interpreting a string of generators as a product of group elements. We say that a group G with a finite set A of generators is automatic if there is a regular language L over A that represents every element of G exactly once, along with a collection of two-tape multiplier automata M_x, where x ranges over A and the empty string, that accept the languages L_x of pairs of words (w_1, w_2) from L for which w_1x and w_2 represent the same element of G. Similarly, G is asynchronously automatic if we allow the multiplier automata to be asynchronous.

Automatic groups naturally arise in the context of the well-known word problem for finitely presented groups, that is, the algorithmic problem of determining whether a given string of generators represents the identity element. The word problem is decidable for both automatic and asynchronously automatic groups, in quadratic time for the former and in exponential time for the latter [1]. It is therefore of interest to understand and classify automatic and asynchronously automatic groups and their underlying automata.

In this paper, we investigate the properties of quasi-regular and weakly regular languages and their use in automatic group theory. In section 2, we unify several of the notions of asynchronous and non-deterministic asynchronous automata that have appeared throughout the literature. In section 3, we investigate the closure properties of each class of languages under first order logical operators. In section 4, we apply our results to the problem of recovering an asynchronously automatic group from its collection of automata, posed in [1].

2 Classes of languages defined by automata

Throughout this section, A is a finite set called the alphabet, and we write A^* to denote the set of all (possibly empty) strings, or words, of letters in A. A language over A is any subset of A^*.

2.1 One-tape regular languages

Given languages L and M over A, let L^* denote the set of all strings formed by concatenating a finite sequence of elements of L, and let LM denote the language consisting of all strings of the form lm where $l \in L$ and $m \in M$.

Definition. The class of regular languages over A is the smallest class of languages over A that:

- contains the empty language,
- contains the languages $\{x\}$ for each $x \in A$, and
- is closed under *, concatenation, union, and intersection.

We can alternatively define regular languages using finite state automata. For any set S, let $P(S)$ denote the power set of S.

Definition. A (non-deterministic) finite state automaton over an alphabet A is a quadruple (S, Δ, S_0, S_f), where:

- S is a finite set of states,
- $\Delta : S \times (A \cup \{\epsilon\}) \rightarrow P(S)$ is the transition function,
- $S_0 \subset S$ is the set of initial states, and
- $S_f \subset S$ is the set of accept states.
Figure 1: A non-deterministic finite state automaton (at left) and a partial deterministic finite state automaton (at right) that each accept the language \(\{ xy^n \mid n \in \mathbb{N} \} \cup \{ xz^n \mid n \in \mathbb{N} \} \). Start states are indicated by a darkened node, and accept states are circled.

The state diagram of a non-deterministic finite state automaton \((S, \Delta, S_0, S_f)\) is the edge-labeled directed graph with vertex set \(S\) and whose directed edges are the pairs \((s, t)\) of states for which \(t \in \Delta(s, x)\) for some \(x \in A \cup \{ \epsilon \}\). We label such an edge by the letter \(x\). We circle the accept states, and the remaining states are called failure states. We use a darkened node to indicate a start state. (See Figure 1.)

The language \(L(W)\) accepted by a finite state automaton \(W\) is the set of all words \(w = x_1x_2\cdots x_n\) for which there is a sequence of states \(s_0, s_1, s_2, \ldots, s_n\) with \(s_0 \in S_0, s_n \in S_f, \) and \(s_i \in \Delta(s_{i-1}, x_{i-1})\) for \(i = 1, \ldots, n\). In terms of the state diagram, a word \(w = x_1x_2\cdots x_n\) is accepted by \(W\) (that is, \(w \in L(W)\)) if and only if there is a path of edges, starting at a start state and ending at an accept state, whose labels are \(x_1, \ldots, x_n\) in that order.

It is often useful to consider the finite state automata for which the next state is completely determined by the current state and the letter being read.

Definition. A finite state automaton \((S, \Delta, S_0, S_f)\) over an alphabet \(A\) is *partial deterministic* if there is a unique start state \(s_0 \in S_0\) and for each state \(s \in S\) and letter \(x \in A\), we have that \(|\Delta(s, x)| \leq 1\) and \(|\Delta(s, \epsilon)| = 0\). The automaton is *deterministic* if \(|\Delta(s, x)| = 1\) for all \(s \in S\) and \(x \in A\).

In terms of the state diagram, a partial deterministic automaton has a unique start state, no \(\epsilon\)-arrows, and at most one \(x\)-arrow starting from each state. It is deterministic if there is exactly one \(x\)-arrow starting from each state.

A well known theorem by Kleene, Rabin, and Scott (see [1], [4]) states that all of these notions are equivalent:

Theorem 1 (Kleene, Rabin, Scott). Let \(L\) be a language over an alphabet \(A\). The following are equivalent:

- \(L\) is accepted by a deterministic finite state automaton.
- \(L\) is accepted by a partial deterministic finite state automaton.
- \(L\) is accepted by a non-deterministic finite state automaton.
- \(L\) is a regular language over \(A\).
2.2 Multi-tape regular languages

The notion of a finite state automaton can be generalized to allow multiple tapes to be read by the machine simultaneously. In this section, we follow the conventions in [1].

To account for the fact that the word written on one tape may be longer than the word written on another, we introduce a padding symbol $ that we use to pad the shorter strings in order to obtain strings of the same length.

Definition. The \(n \)-tape padded alphabet over \(A \) is the set
\[
(A \cup \{\$\})^n \setminus \{(\$, \$, \ldots , \$)\}.
\]
We denote the \(n \)-tape padded alphabet by \(A^\$ \) when \(n \) is understood.

For any word \(w \), let \(|w| \) denote the number of letters in \(w \).

Definition. Given an \(n \)-tuple of strings \(\overline{w} = (w_1, \ldots , w_n) \), let \(m = \max_i |w_i| \), and for \(k = 1, \ldots , m \) define \(\overline{\sigma}_k \) to be the \(n \)-tuple consisting of the \(k \)th letters of each \(w_i \), where the \(k \)th letter is taken to be a padding symbol $ if \(k > |w_i| \). Then the padded string associated with \(\overline{w} \) is the word \(\overline{\sigma}_1 \cdots \overline{\sigma}_m \). If \(L \) is any set of \(n \)-tuples of strings over \(A \), the associated padded extension over \(A^\$ \), denoted \(L^\$ \), is the language consisting of the padded strings associated with the elements of \(L \).

Example. The padded string associated with \((aa, abbc, cab)\) is the sequence of triples \((a, a, c)\), \((a, b, a)\), \((\$, b, b)\), \((\$, c, b)\). Note that concatenating these triples along each coordinate results in the triple of padded words \((aa\$, abbc, cab\$)\).

Notice that, given a language \(K \) consisting of only padded strings, we may remove the $ symbols from the corresponding \(n \)-tuples of padded words to obtain the unique set \(L \) of \(n \)-tuples of words over \(A \) for which \(K = L^\$ \).

We now have the tools to define an \(n \)-tape finite state automaton.

Definition. An \(n \)-tape deterministic finite state automaton over \(A \) is a deterministic finite state automaton \(W \) over the padded alphabet \(A^\$ \) that only accepts padded strings. If the language \(K \) consisting of the padded strings accepted by \(W \) is equal to \(L^\$ \), then we say that \(W \) accepts the language \(L \), and that \(L \) is an \(n \)-tape regular language over \(A \).

Notice that, by Theorem 1, the definition of \(n \)-tape regular language agrees with Definition 2.1 in the case \(n = 1 \).

2.3 Quasi-regular languages

The \(n \)-tape automata described above read all \(n \) tapes in parallel, at the same speed. For this reason, we say that such automata are synchronous. We now consider asynchronous automata, which read from one tape at a time, and may switch tapes several times in the process.

Two equivalent definitions of two-tape automata have appeared in the literature independently. The notion was first introduced in [4]:

Definition. A two-tape asynchronous automaton over an alphabet \(A \) is a deterministic automaton over the alphabet \(A \cup \{\$\} \), along with a partition of the state set into two sets \(S_L \) and \(S_R \), called the left and right state sets.
Define a shuffle of an n-tuple of words \((w_1, \ldots, w_n)\) over an alphabet \(A\) is an ordering of all the letters of \(w_1, \ldots, w_n\) that respects the ordering in each of the words \(w_i\). For instance, two valid shuffles of \((abc, bd)\) are \(abbdcd\) and \(badbdc\) (the shuffle \(abbdcd\) also carries information about which \(b\) came from the left or right component, but we use the term ‘shuffle’ loosely to refer to either the mapping of the letters to their position, or to the word spelled by the shuffle). Also, for any word \(w\), define \(w\$\) to be the word formed by appending the symbol \$ at the end of the string \(w\).

The language \(L(W)\) accepted by an asynchronous automaton \(W\) is the set of all pairs \((u, v)\) of words over \(A\) such that there is some (unique) shuffle of \((u\$, v\$)\) that is accepted by the underlying deterministic automaton and has the property that the automaton must be in a state in \(S_L\) to read a letter from \(u\) and in a state in \(S_R\) to read a letter from \(v\).

In [1], asynchronous automata are defined as follows.

Definition. A two-tape asynchronous automaton over an alphabet \(A\) is a partial deterministic finite state automaton \(W\) over the language \(A \cup \{\$\}\), along with a partition of the set of states into five subsets \(S_L, S_R, S_L^S, S_R^S, S^S\), such that the following hold:

- \(S^S\) contains exactly one element, \(s^S\), which is also the unique accept state of the automaton.
- The start state of \(W\) is in either \(S_L\) or \(S_R\).
- An arrow is labeled by \$ if and only if it maps a state in \(X\) to a state in \(Y\), where the pair \((X, Y)\) is one of \((S_L, S^S_L), (S_R, S^S_R), (S^S_L, S^S), (S^S_R, S^S)\).
- Arrows starting in \(S_L\) can only end in \(S_L, S_R,\) or \(S^S_R\).
- Arrows starting in \(S_R\) can only end in \(S_L, S_R,\) or \(S^S_L\).
- Arrows starting in \(S^S_L\) can only end in \(S^S_L\) or \(S^S\).
- Arrows starting in \(S^S_R\) can only end in \(S^S_R\) or \(S^S\).
- Arrows starting in \(S^S\).

In this definition, the language accepted by an asynchronous automaton is the set of all pairs of words \((u, v)\) such that there is a (unique) shuffle of \((u\$, v\$)\) accepted by the underlying deterministic automaton. Following a \$-arrow from, say, \(S_L\) to \(S^S_R\) indicates that we have reached the end of the left tape and now only need to read the right tape until we reach another \$.

In order to distinguish between these two definitions, we call the former a semi-sorted asynchronous automaton, and the latter a sorted asynchronous automaton, since the states of the former are only sorted based on the tape being read, while the states of the latter are further sorted based on the number of \$ symbols the automaton has read so far.

We can easily generalize each of these definitions to \(n\) tapes. For simplicity, we write \([n]\) to denote the set \(\{1, 2, \ldots, n\}\).

Definition. An \(n\)-tape semi-sorted asynchronous automaton over an alphabet \(A\) is a partial deterministic finite state automaton over the alphabet \(A \cup \{\$\}\), along with a partition of the state set into \(n\) sets \(S_1, \ldots, S_n\).

Definition. An \(n\)-tape sorted asynchronous automaton over an alphabet \(A\) is a partial deterministic finite state automaton \(W\) over the language \(A \cup \{\$\}\), along with a partition of the set of states into subsets of the form \(S_i^V\) where \(V\) is a proper subset of \([n]\) and \(i \in [n]\backslash V\), and a final subset \(S_f^{[n]}\), such that the following hold:
• The start state of W is in S^0_i for some i.

• An arrow is labeled by $\$ if and only if it maps a state in X to a state in Y, where the pair (X,Y) is of the form (S^V_i, S^V_j) with $j \neq i$ and $U = V \cup i$.

• Arrows not labeled by $\$ that start in S^V_i must end in S^V_j for some $j \not\in V$.

• S^f_n contains exactly one element, $s^\$", which is also the unique accept state of the automaton.

• No arrows start in S^f_n.

We show that these two definitions are equivalent.

Theorem 2. Sorted and semi-sorted asynchronous automata accept the same class of languages.

Proof. Let W be an n-tape sorted asynchronous automaton with (partial) transition function Δ and with state sets S^V_i and S^f_n as in the definition. For $i = 1, \ldots, n-1$, define

$$T_i = \bigcup_V S^V_i$$

where V ranges over the proper subsets of $[n]$ not containing i. Also define

$$T_n = \left(\bigcup_V S^V_n \right) \cup S^f_n$$

where V ranges over the proper subsets of $[n]$ not containing n. Then we see that the partition $\{T_i\}$ makes W into a semi-sorted asynchronous automaton M with $L(M) = L(W)$.

Conversely, let M be an n-tape semi-sorted asynchronous automaton, with state sets T_i, $i = 1, \ldots, n$. We construct a sorted asynchronous automaton W as follows. We first construct $2^n - 1$ exact copies of each T_i, labeled S^V_i for each proper subset V of $\{1,2,\ldots,n\}$, inheriting any arrows that start and end in T_i. For any set V and any two distinct indices $i, j \not\in V$, we draw arrows between states $s \in S^V_i$ and $t \in S^V_j$ if and only if the corresponding states in T_i and T_j are connected in M.

The quality of being a start state or accept state is not inherited, with one exception: if the start state of M is in T_i, we define the corresponding element of S^0_i to be the start state of W. We also construct a new accept state $s^\$ and define $S^f_{\{1,\ldots,n\}} = \{s^\$\}$.

We now perform the following operations in order:

• For each $i \in [n]$, let $V_i = [n] \setminus \{i\}$. If an arrow labeled by $\$ in M starts at a state $s_i \in T_i$ and ends at an accept state of W, draw a new arrow in W labeled by $\$ from the corresponding state in S^V_i to $s^\$.

• If an arrow labeled by $\$ in M starts in T_i and ends in T_j, then for each V not containing i or j, draw a new arrow in W labeled by $\$ starting and ending at the corresponding states in S^V_i and $S^V_{j \cup \{i\}}$.

• Remove any $\$-arrow in W that both starts and ends in any of the sets S^V_i.

These operations guarantee that when we are done reading the ith tape and reach the corresponding $\$-arrow, the next state is in some S^V_i where V contains i. This makes the resulting automaton W into a sorted asynchronous automaton that accepts the same language as M. This completes the proof. □
Figure 2: A sorted asynchronous automaton that accepts the language $L = \{(x^n, x^{2n}) \mid n \in \mathbb{N}\}$. The sets $S_L, S_R, S^8_L, S^8_R,$ and S^8 are outlined.

We call a language accepted by a (sorted or unsorted) asynchronous automaton a quasi-regular language. The class of quasi-regular languages is strictly larger than the class of regular languages. To illustrate this, we first prove a generalization of the well-known pumping lemma for n-tape regular languages.

Lemma 1. Let L be a regular n-variable language over an alphabet A. There is a positive integer p such that for any n-tuple of words $w = (w_1, \ldots, w_n) \in L$ with $\max |w_i| \geq p$, there are nonnegative integers $k \geq 1$ and l, with $k + l \leq m$, such that if we write each w_i as $u_i m_i v_i$ where x_i consists of the kth through $(k+l)$th letters of w_i, then we have $(u_1 m'_1 v_1, \ldots, u_n m'_n v_n) \in L$ for all $r \geq 1$.

Moreover, each substring x_i either consists entirely of letters in A or consists entirely of $\$ symbols.

Proof. Let W be an n-tape finite state automaton accepting L, and let p be the number of states of W. Then if $w = (w_1, \ldots, w_n)$ is in L such that $\max |w_i| \geq p$, the path of arrows traced out on W that read w visits at least $p + 1$ states, and so some state must be visited more than once. In particular, there is a loop of some length l in the path, that starts at the kth arrow in the path. For each $i = 1, \ldots, n$, let m_i denote the sequence of letters appearing in the ith coordinate along this loop.

We may now form new accepted paths by repeating this loop r times before continuing along the path. Thus, if we write $w_i = u_i m_i v_i$ then $(u_1 m'_1 v_1, \ldots, u_n m'_n v_n)$ is also accepted by W for any $r \geq 1$.

Finally, if m_i consists of some letters and some $\$ symbols, we would obtain an accepted n-tuple of words which does not correspond to a padded string, which contradicts the definition of an n-tape finite state automaton. Thus each m_i either consists entirely of letters in A or consists entirely of $\$ symbols.

We now provide an example demonstrating that not all quasi-regular languages are regular.

Example. The two-variable language $L = \{(x^n, x^{2n}) \mid n \in \mathbb{N}\}$ is quasi-regular but not regular.

Proof. Since L is accepted by the sorted asynchronous automaton shown in Figure 2, L is quasi-regular.

Now, suppose L were regular. By Lemma 1 there are nonnegative integers k and l such that we may repeat the kth to $(k + l)$th letters of each component any number of times to obtain new elements of L, as long as either $1 \leq k \leq k + l \leq n$ (when both subwords consist only of x’s) or $n + 1 \leq k \leq k + l \leq 2n$ (when
the left subword consists only of $ symbols and the right consists only of x’s). We consider these two cases separately.

If 1 \leq k \leq k + l \leq n, the words $(x^{n+r(l+1)}, x^{2n+r(l+1)})$ are in L for each $r \geq 0$ by Lemma 1, but since $l + 1 \geq 1$ we have $2(n + r(l + 1)) = 2n + 2r(l + 1) \neq 2n + r(l + 1)$ for $r > 0$. Thus these words are not in L, a contradiction.

If $n + 1 \leq k \leq k + l \leq 2n$, the words $(x^n, x^{2n+r(l+1)})$ are in L for $r \geq 0$, again a contradiction since $2n < 2n + r(l + 1)$ for $r > 0$.

It follows that L is not regular.

\[\square \]

2.4 Weakly regular languages

We now study non-deterministic asynchronous automata, which may read from any of several possible subcollections of the tapes, called filters, at each step, and has a choice of several possible next states at each transition. In [3], Khoussainov and Nerode defined these automata as follows.

Definition. Let $E = P(P([n]) \setminus \{\emptyset\})$, and call E the set of filters on n tapes. Let A be a finite alphabet, and let $A^\$ = $(A \cup \{\$\}) \setminus \{\$, $\$, $\$, $\})$ be the associated padded alphabet. Then an n-tape non-deterministic filter asynchronous automaton, or FAA, is a quadruple (S, S_0, Δ, S_f) where:

- S is a finite set of states,
- $S_0 \subseteq S$ is the set of initial states,
- $S_f \subseteq S$ is the set of accept states, and
- $\Delta : S \times A^\$ \to P(S) \times E$ is a transition function that, given a state and a letter over $A^\$, returns a set of next states along with a set of filters, and satisfies:
 - **Terminus property:** For all $\sigma = (\sigma_1, \ldots, \sigma_n) \in A^\$ and for all $s \in S$, if $\sigma_i = \$ and the set of next states given by $\Delta(s, \sigma)$ is nonempty, then i is not in any of the filters given by $\Delta(s, \sigma)$.

An n-tuple of words is accepted by a FAA if the following condition is satisfied. We write the n words in question on n tapes, starting in a start state of W, we choose a valid filter as given by the transition function, move one position to the right along precisely those tapes whose index is in that filter, and non-deterministically choose one of the next possible states as the next state. If this process can be repeated until the end of every tape is reached, and the final state of this process is an accept state, then the tuple is accepted by W.

Formally, an n-tuple of words $\overline{w} = (w_1, \ldots, w_n)$ is accepted by W if and only if there is a sequence of states s_0, s_1, \ldots, s_f where s_0 is a start state and s_f is an accept state, along with an associated sequence of filters $\chi_0, \ldots, \chi_{f-1}$, with the following properties. For each $k = 0, \ldots, f$, let $\overline{\sigma}_i$ be the n-tuple whose ith coordinate is the rth entry of w_i, where r is the total number of filters of χ_0, \ldots, χ_k containing i. Then if for all k, $\Delta(s_k, \overline{\sigma}_k) = (S, X)$ where S contains s_{k+1} and X contains χ_k, the n-tuple w is accepted by W.

Remark. This is a slight modification of the original definition of Khoussainov and Nerode in [3], which does not include the condition that the state set of $\Delta(s, \sigma)$ is nonempty in the terminus property. Note that, in a FAA, if $\Delta(s, \sigma) = (\emptyset, X)$ then we cannot make a move starting at s with input σ, and so the content of X does not matter in determining its accepted language. Thus, the two definitions are equivalent. We use our modified version throughout.
Another definition of non-deterministic asynchronous automata in the two-tape case appeared independently in [6]. Shapiro defined a two-tape non-deterministic asynchronous automaton to be a non-deterministic automaton along with a partition of the set of states into two sets. We may generalize Shapiro’s definition to \(n \) tapes as follows.

Definition. An \(n \)-tape non-deterministic semi-sorted asynchronous automaton (NSAA) over an alphabet \(A \) is a non-deterministic finite state automaton over \(A \sqcup \$ \) along with a partition of the set of states into \(n \) sets \(S_1, \ldots, S_n \).

We say that an \(n \)-tuple of words \(\mathbf{w} = (w_1, \ldots, w_n) \) is accepted by a NSAA \(W \) with transition function \(\Delta \) if there is a shuffle \(u = u_1u_2 \cdots u_{|w_1|+\cdots+|w_n|+n} \) of \((w_1\$, \ldots, w_n\$) \) and a path of states \(s_0, \ldots, s_{|w_1|+\cdots+|w_n|+n} \) an accept state, such that the arrow between \(s_i \) and \(s_i+1 \) is labeled by \(u_{i+1} \), and if \(u_{i+1} \) is a letter from \(w_j \), then \(s_i \) is in the state set \(S_j \). In other words, if \(W \) is in a state in \(S_j \), it will read the next letter from the \(j \)th tape.

We will show that the class of languages (\(n \)-tuple relations) accepted by FAA’s is identical to the class of languages accepted by NSAA’s. In order to do so, we first define yet another type of automaton that accepts the same class of languages.

Definition. A deterministic-filter (non-deterministic) asynchronous automaton \(\text{DFAA} \), or FAA, is a FAA with the property that, in any given state, there is at most one possible filter to choose from. In other words, if \(\Delta(s, \mathbf{\sigma}) = (S, X) \) then \(|X| \leq 1 \).

We now show that FAA’s, DFAA’s, and NSAA’s all have the same class of accepted languages.

Theorem 3. Let \(L \) be an \(n \)-variable language over a finite alphabet \(A \). The following are equivalent.

- \(L \) is the accepted language of a filter asynchronous automaton (FAA).
- \(L \) is the accepted language of a deterministic filter asynchronous automaton (DFAA).
- \(L \) is the accepted language of a non-deterministic semi-sorted asynchronous automaton (NSAA).

Proof. Let \(W = (S, S_0, \Delta, S_f) \) be a FAA. We construct a DFAA \(W' \) accepting the same language as \(W \).

Define the state set of \(W' \) to be
\[
S' = S \times (P([n]) \setminus \{\{\}\}) = \{(s, \chi) \mid s \in S \text{ and } \chi \in P([n]) \setminus \{\{\}\})\}.
\]

Define the set of start states \(S'_0 \) to be the set of states \((s_0, \chi) \in S' \) such that \(s_0 \in S_0 \), and define the set of final states \(S'_f \) to be the set of states \((s_f, \chi) \in S' \) such that \(s_f \in S_f \). Finally, define the transition function \(\Delta' \) by
\[
\Delta'((s, \chi), \sigma) = \begin{cases}
\{(t, \mu) \mid t \text{ in the set of states of } \Delta(s, \sigma), \{\chi\}\} & \text{if } \chi \text{ is a filter of } \Delta(s, \sigma) \text{.} \\
\{\{\}\}, \{\chi\} & \text{otherwise}
\end{cases}
\]

In other words, suppose \(W' \) is in the state \((s, \chi) \) and reads an \(n \)-tuple \(\sigma \). If \(\chi \) is a possible filter of \(W \) at state \(s \) and input \(\sigma \), and \(t \) a possible next state of \(W' \), then \(W' \) may change to the state \((t, \mu)\) where \(\mu \) is any valid filter. Furthermore, \(W' \) moves to the next letter in precisely those tapes indexed by the filter \(\chi \).

We now show that \(W' \) is a well-defined FAA; since there is a unique filter to choose from in any given state, it then follows that it is a DFAA.
It is clear that W' satisfies all the properties of a FAA besides the terminus property. To show that Δ' satisfies the terminus property, let (s, χ) be any state of W' and let $\overline{\sigma} = (\sigma_1, \ldots, \sigma_n)$ be any n-tuple of letters over A. First, suppose χ is in the set of possible filters of $\Delta(s, \overline{\sigma})$. Then for any i for which $\sigma_i = \$,$ we have that $i \notin \chi$ since W is a FAA. Thus i does not occur in the set of possible filters, namely, $\{\chi\}$, of $\Delta'((s, \chi), \overline{\sigma})$.

Otherwise, if χ is not in the set of possible filters of $\Delta(s, \overline{\sigma})$, then the state set of $\Delta'((s, \chi), \overline{\sigma})$ is empty, and so the terminus property is trivially satisfied.

We now show that W' accepts the same language as W. Let w be an accepted n-tuple of words in W. Then there is a path of filters χ_1, \ldots, χ_f that one follows from a start state s_0 to a final (accept) state s_f. Let $\sigma^1, \ldots, \sigma^f$ be the n-tuples of letters that are read at each step along the way.

Consider the path of states $(s_0, \chi_1), (s_1, \chi_2), \ldots, (s_f, \chi_f)$ in W'. By our definition of σ^1, the automaton W' may read σ^1 with filter χ_1 to move from state (s_0, χ_1) to (s_1, χ_2), at which point it reads σ^2, and so on, it has read all of w and reaches the accept state (s_f, χ_f). Thus every word accepted by W is accepted by W'.

Conversely, suppose $(s_0, \chi_1), (s_1, \chi_2), \ldots, (s_f, \chi_f)$ is any path of states in W', ending on an accept state (s_f, χ_f), that defines the sequence $\sigma^1, \ldots, \sigma^f$ of n-tuples of letters being read by the corresponding arrows. Then there is a path between the states s_0, \ldots, s_f with associated filters χ_1, \ldots, χ_f that is accepted by W and reads off precisely these n-tuples. Thus every word accepted by W' is accepted by W.

It follows that every language accepted by a FAA is also accepted by an DFAA. Note that every DFAA is also a FAA by definition, and so every DFAA language is also accepted by a FAA. This completes the first equivalence.

Now, let V be an arbitrary DFAA. We construct a NSAA P that accepts the same language as V. To do so, we first note that the states of V can be sorted into sets based on their associated filter χ.

We can represent V as a graph with the states as nodes and with arrows between states labeled by n-tuples of letters to indicate the transition diagram, where the nodes are sorted into $2^n - 1$ disjoint sets, one for each filter χ. Let S_i be the set whose filter consists only of the tape i. For each state $T = (s, \chi)$ that is not in any S_i, we perform the following operation:

1. Let j_1, \ldots, j_k be the elements of the filter χ of T. Then we move T to the set S_{j_i}.

2. For each arrow starting at T, say $T \rightarrow T'$ labeled by σ, add new states T_2, \ldots, T_k to the sets S_{j_2}, \ldots, S_{j_k} respectively, and draw arrows labeled by σ from T to T_2, from T_2 to T_3, etc., and then from T_k to T'.

Once this has been done, we replace the label σ on any arrow starting in S_i with the label σ_i, for it is only this letter which is allowed through. It is clear that the resulting automaton P accepts the same set of n-tuples of words as V. It follows that every language accepted by a DFAA is also accepted by a NSAA.

Finally, given a NSAA V, we may interpret it as a DFAA by making the associated filter of each state in S_i be the filter $\{i\}$, and re-labeling the arrows starting in S_i with n-tuples that match in the ith position for each i. Thus every language accepted by a NSAA is also accepted by a DFAA.

\[\square\]

3 Closure properties

A regular predicate over an alphabet A is any statement $P(x_1, \ldots, x_n)$ such that the set of tuples of words (x_i) in A^n for which P holds is a regular language. We can similarly define quasi-regular and weakly regular predicates. It is known that regular predicates are closed under first-order predicate logic. We now investigate the closure properties of quasi-regular and weakly regular predicates.

Proposition 1. In the following, let $P(x_1, \ldots, x_n)$ and $Q(x_1, \ldots, x_n)$ be n-variable quasi-regular predicates.
(a) The predicate $\neg P(x_1, \ldots, x_n)$ is quasi-regular.

(b) The predicate $P(x_1, \ldots, x_n) \land Q(x_1, \ldots, x_n)$ is not necessarily quasi-regular.

(c) The predicate $P(x_1, \ldots, x_n) \lor Q(x_1, \ldots, x_n)$ is not necessarily quasi-regular.

(d) The predicate $(\exists x_1)P(x_1, \ldots, x_n)$ is weakly regular, but not necessarily quasi-regular.

(e) The predicate $(\forall x_1)P(x_1, \ldots, x_n)$ is not necessarily quasi-regular.

(f) If $n = 2$, the predicate $(\exists x_1)P(x_1, x_2)$ is regular.

(g) If $n = 2$, the predicate $(\forall x_1)P(x_1, x_2)$ is regular.

In summary, n-variable quasi-regular predicates (languages) are closed under \neg (complementation), but not under \lor (union), \land (intersection), \exists (projection) or \forall (complementation of the projection of the complement). In the case $n = 2$, the application of \exists or \forall yields a 1-variable regular language.

Proof. See [1] for a proof of claims (a), (f), and (g).

For (b), recall from Example 2.3 that the language $\{x^n, x^{2n}\}$ is quasi-regular. Similarly, the language $\{x^{2n}, x^n\}$ is quasi-regular. We show that their union $L := \{(x^n, x^{2n})\} \cup \{(x^{2n}, x^n)\}$ is not quasi-regular.

Assume to the contrary that there is a semi-sorted deterministic asynchronous automaton M accepting L. Since M has a finite number of states and the lengths of the paths accepting pairs of the form (x^n, x^{2n}) become arbitrarily large, there must exist a cycle in its state diagram. Since no cycle can contain a $\$ symbol, the cycle must consist entirely of edges labeled by x. Tracing around this cycle will yield a word of the form (x^s, x^t) for some s and t.

Choose $N > 0$ large enough so that the path accepting (x^N, x^{2N}) traverses this cycle at least once. We can repeat the cycle k times, so that M accepts all words of the form (x^{N+ks}, x^{2N+kt}) for nonnegative integers k. It follows from the definition of L that $t = 2s > 0$.

Similarly, there exists a cycle of the form (x^n, x^n) where $u = 2v > 0$. These cycles are clearly distinct, and must occur on a path from the start vertex that does not contain any $\$ symbols. But since M is deterministic, this is impossible, and we have a contradiction.

To prove (c), assume to the contrary that $R \land S$ is quasi-regular for any n-variable quasi-regular predicates R and S. Note that $P \lor Q$ is equivalent to $\neg(\neg P \land \neg Q)$. Since $\neg P$ and $\neg Q$ are quasi-regular, by our assumption we have that $\neg P \land \neg Q$ is quasi-regular, and hence $\neg(\neg P \land \neg Q)$ is quasi-regular as well. Thus $P \lor Q$ is necessarily quasi-regular, contradicting (b).

For (d), we first show that the predicate is weakly regular. Let M be a semi-sorted asynchronous automaton accepting the relation defined by P, with state sets S_1, \ldots, S_n. Then we can replace all arrows starting in the state set S_1 corresponding to x_1 by c-arrows and merge the states of S_1 with S_2 to obtain a NSAA that accepts $(\exists x_1)P(x_1, \ldots, x_n)$.

To show $(\exists x_1)P(x_1, \ldots, x_n)$ is not necessarily quasi-regular, let $A = \{x, y, z\}$, and let $L = \{(y, x^n, x^{2n})\} \cup \{(z, x^{2n}, x^n)\}$, where n ranges over the nonnegative integers. We show that the predicate $(a, b, c) \in L$ is a quasi-regular predicate over A, but its projection $\exists a, (a, b, c) \in L$ is not quasi-regular. A semi-sorted asynchronous automaton accepting the language L is shown in Figure 3. Now, the predicate $(\exists a, (a, b, c) \in L$ defines the two-variable language $\{(x^n, x^{2n})\} \cup \{(x^{2n}, x^n)\}$, which is not quasi-regular, by our example for (b).

For (e), we note that $(\exists x_1)P(x_1, \ldots, x_n)$ is equivalent to $\neg(\forall x_1)(\neg P(x_1, \ldots, x_n))$. Thus, if \forall maps quasi-regular predicates to quasi-regular predicates, it would follow that \exists does as well by closure under complementation, contradicting (d). Thus \forall does not preserve quasi-regularity. □
Figure 3: A semi-sorted asynchronous automaton accepting the language \(\{(y, x^n, x^{2n}) \cup \{(z, x^{2n}, x^n)\}\}\).

In part (d) of the above proposition, we found that applying the \(\exists\) operator to a quasi-regular predicate yields a weakly regular predicate. We now show that every weakly regular predicate can be obtained in this way.

Theorem 4. Suppose \(P(x_1, \ldots, x_n)\) is an \(n\)-variable weakly regular predicate. Then there is an \((n + 1)\)-variable quasi-regular predicate \(Q(x_0, \ldots, x_n)\) for which

\[
P(x_1, \ldots, x_n) \iff (\exists x_0)Q(x_0, \ldots, x_n).
\]

Proof. Let \(L\) denote the language defined by \(P(x_1, \ldots, x_n)\). Let \(M\) be a non-deterministic semi-sorted asynchronous automaton (NSAA) over an alphabet \(A = \{\sigma_1, \ldots, \sigma_n\}\), with state sets \(S_1, \ldots, S_n\), accepting the language \(L\). We construct from \(M\) a semi-sorted asynchronous automaton \(M''\), with an additional state set \(S_0\), as follows.

Let \(k\) be the number of \(\epsilon\)-arrows appearing in the state diagram of \(n\). We choose any ordering of the \(\epsilon\)-arrows, and perform the following operation on the \(i\)th \(\epsilon\) arrow for \(i = 1, \ldots, k\). We create a new state \(s_i\) in the new state set \(S_0\), and make \(s_i\) an accept state or start state if and only if \(s\) is an accept state or start state, respectively. Suppose the \(\epsilon\) arrow begins in a state \(r_1\) and ends in a state \(r_2\) defined by \(P(x_1, \ldots, x_n)\). For each arrow \(\alpha\) from any other state \(t\) into \(r_1\), we draw a new arrow with the same label as \(\alpha\) from \(t\) to \(s_i\), and an arrow labeled by a new letter \(\sigma_{n+i}\) from \(s_i\) to \(r_2\). Then, we remove the \(\epsilon\) arrow.

We now have a new NSAA \(M'\) over an extended alphabet \(\{\sigma_1, \ldots, \sigma_{n+k}\}\) having no \(\epsilon\)-arrows (here \(k\) is the number of \(\epsilon\)-arrows in the original automaton \(M\)). Note that we have simply re-routed every path through the original \(\epsilon\)-arrows with the use of extra letters appearing in the 0th component, and so the \(n\)-tuples of words appearing as the last \(n\) words in an \((n + 1)\)-tuple accepted by \(M'\) are precisely those \(n\)-tuples in \(L\). Thus, \(M'\) accepts a language \(L'\) whose projection onto the last \(n\) variables is the language \(L\).

Next, we modify \(M'\) to form a semi-sorted asynchronous automaton \(M''\), accepting another language \(L''\) whose projection onto the last \(n\) variables is also \(L\). Let \(j\) be the total number of arrows \(\alpha\) of \(M\) such that the state \(s\) at which \(\alpha\) begins has at least one more arrow with the same label as \(\alpha\) beginning at \(s\). (Notice that \(s\) cannot lie in \(S_0\), since in our construction above, every arrow starting in \(S_0\) was given a unique label.) Choose an ordering \(\alpha_1, \ldots, \alpha_j\) of these arrows.

12
For each state \(s \) having two arrows of the same label \(\sigma \) beginning at \(s \), we create a new state \(s' \) in \(S_0 \). We make \(s' \) an accept state or start state if and only if \(s \) is an accept state or start state, respectively. Next, we draw an arrow labeled by \(\sigma \) from \(s \) to \(s' \). Now, each arrow labeled by \(\sigma \) starting at \(s \) is one of the arrows \(\alpha \) by construction. Suppose \(\alpha \) ends at the state \(s_i \). We draw an arrow from \(s' \) to \(s_i \) labeled by a new letter \(\sigma_{n+k+i} \), and we remove the arrow \(\alpha \). Notice that there is now exactly one arrow labeled \(\sigma \) beginning at \(s \), and by following the arrow into \(S_0 \), we can come out to any of the states that \(\sigma \) originally pointed to in \(M' \). Thus, we have re-routed the redundant arrows through a single arrow into \(S_0 \), without changing any of the nonzero components of our accepted paths.

We now have an automaton with no \(\epsilon \)-arrows and at most one arrow of each label starting from a given state. Thus, to make it partial deterministic, we only need to consider the possibility that there are multiple start states. Let \(t_1, \ldots, t_m \) be the start states of the automaton. We construct a new start state \(r \) in \(S_0 \), and for each \(t_i \) we draw an arrow from \(r \) to \(t_i \) labeled by a new letter \(\sigma_{n+k+j+i} \). We then make the states \(t_i \) into non-start states. This yields a semi-sorted asynchronous automaton \(M'' \), accepting a quasi-regular language \(L'' \), such that \((\exists x_0)(x_1, \ldots, x_n) \in L'' \) defines the language \(L \).

Proposition 2. In the following, let \(P(x_1, \ldots, x_n) \) and \(Q(x_1, \ldots, x_n) \) be \(n \)-variable weakly regular predicates.

(a) The predicate \(\neg P(x_1, \ldots, x_n) \) is not necessarily weakly regular.

(b) The predicate \(P(x_1, \ldots, x_n) \lor Q(x_1, \ldots, x_n) \) is weakly regular.

(c) The predicate \(P(x_1, \ldots, x_n) \land Q(x_1, \ldots, x_n) \) is not necessarily weakly regular.

(d) The predicate \((\exists x_1)P(x_1, \ldots, x_n) \) is weakly regular.

(e) The predicate \((\forall x_1)P(x_1, \ldots, x_n) \) is not necessarily weakly regular.

(f) If \(n = 2 \), the predicate \((\exists x_1)P(x_1, x_2) \) is regular.

Proof. Claim (f) is shown in [6].

We first prove (b). Given two \(n \)-variable weakly regular languages, let \(M \) and \(N \) be corresponding non-deterministic semi-sorted asynchronous automata (NSAA’s), with state sets \(S_1, \ldots, S_n \) and \(T_1, \ldots, T_n \) respectively. Then the disjoint union of their state diagrams, with state sets \(S_1 \cup T_1, \ldots, S_n \cup T_n \), is another NSAA that accepts the union of the two weakly regular languages.

For (c), consider the two-variable languages

\[L_1 = \{ (x^n y x^m, x^k y x^n) \} \]

and

\[L_2 = \{ (x^n y x^m, x^n y x^k) \}. \]

First, note that each of \(L_1 \) and \(L_2 \) is a weakly regular language; in fact, they are quasi-regular, with the state diagram of a semi-sorted synchronous automaton accepting \(L_1 \) shown in Figure 4. We can easily modify the diagram to see that \(L_2 \) is quasi-regular as well.

Now, assume for contradiction that the language \(L_1 \cap L_2 = \{ (x^n y x^m, x^n y x^n) \} \) is weakly regular. By (f), it follows that the one-variable language \(\{ (x^n y x^m) \} \) is regular. But the pumping lemma shows that this cannot be regular, and so we have a contradiction. This proves (c).

We can now prove (a). Suppose that the complement of any weakly regular language is weakly regular. Then using the identity \(P \land Q = \neg((\neg P) \lor (\neg Q)) \) and the fact that weakly regular languages are closed under union, we have that they are closed under intersection, contradicting (c).
For (d), let M be a NSAA accepting the language defined by P, with state sets S_1, \ldots, S_n. Then we can replace all arrows starting in the state set S_1 corresponding to x_1 by ϵ-arrows and merge the states of S_1 with S_2 to obtain a NSAA that accepts the language defined by $(\exists x_1)P(x_1, \ldots, x_n)$.

Finally, for part (e), we use the languages L_1 and L_2 defined above. Since they are quasi-regular, their complements L_1^c and L_2^c are quasi-regular as well. Thus, the language $L := L_1^c \cup L_2^c$ is weakly regular by (b).

However, its complement, $L^c = (L_1^c \cup L_2^c)^c = L_1 \cap L_2$, is not weakly regular, as above. By Theorem 4, there is a quasi-regular predicate $R(u, v, w)$ for which $(\exists u)R(u, v, w) = L$. Thus, the negation of the statement, $\neg(\exists u)R(u, v, w)$ is weakly regular. This statement can be rewritten as $(\forall u)\neg R(u, v, w)$. Since quasi-regular predicates are closed under negation, it follows that there is a quasi-regular (and hence weakly regular) predicate $P(u, v, w)$, namely, $\neg R(u, v, w)$, for which $(\forall u)P(u, v, w)$ is not weakly regular. This completes the proof.

4 Asynchronously automatic groups

4.1 Background

We first give some background on finitely presented and automatic groups, following the conventions and terminology in [1].

Let A be a finite set along with a pairing of its elements, so that paired elements are called inverses of each other. If $x \in A$, we write $x^{-1} \in A$ to denote the formal inverse of x in A. (Note that an element may be its own inverse.) Then the free group on A, denoted $F(A)$, is the group under concatenation of all words over A that contain no adjacent inverse generators.

A finite presentation of a group G consists of a finite inverse-closed set $A \subset G$ called the generating set or the set of generators, along with a finite set $R \subset A^*$ called the set of relators, and such that if N denotes the smallest normal subgroup of $F(A)$ containing R, then $F(A)/N = G$. In this case, we write $G = \langle A \mid R \rangle$.

Given a finite presentation $G = \langle A \mid R \rangle$ and a word $w \in A^*$, we write \hat{w} to denote the element of G that w represents, that is, when we interpret concatenation as group multiplication.

Definition. Let $G = \langle A \mid R \rangle$ be a finitely presented group. A automatic structure for the presentation is a finite state automaton W, called the word acceptor, along with multiplier automata M_x for each $x \in A \cup \{\epsilon\}$, such that the following hold:
• The language accepted by L represents every element of the group, that is, $\{ \hat{w} \mid w \in L \} = G$.

• For each $x \in A$, M_x is a finite state automaton that accepts the language $L_x = \{(w_1, w_2) \in L \times L : \hat{w_1}x = \hat{w_2}\}$.

• M_ϵ is a finite state automaton that accepts the language $L_\epsilon = \{(w_1, w_2) \in L \times L : \hat{w} = \hat{w_1}\}$.

It is known that if a group has an automatic structure with respect to one set of generators, then it has an automatic structure with respect to every set of generators [1]. Thus, if a group has a finite presentation with an automatic structure, it is said that the group is automatic.

Epstein, et. al [1] gave a similar definition of an asynchronously automatic group.

Definition. Let $G = \langle A \mid R \rangle$ be a finitely presented group. An asynchronous automatic structure for the presentation is a finite state automaton W, called the word acceptor, along with asynchronous multiplier automata M_x for each $x \in A \cup \{\epsilon\}$, such that the following hold:

• The language accepted by L represents every element of the group, that is, $\{ \hat{w} \mid w \in L \} = G$.

• For each $x \in A$, M_x is an asynchronous automaton that accepts the language $L_x = \{(w_1, w_2) \in L \times L : \hat{w_1}x = \hat{w_2}\}$.

• M_ϵ is an asynchronous automaton that accepts the language $L_\epsilon = \{(w_1, w_2) \in L \times L : \hat{w} = \hat{w_1}\}$.

As in the synchronous case, if a group has an asynchronous automatic structure with respect to one set of generators, then it has an asynchronous automatic structure with respect to every set of generators [1]. Thus, if a group has a finite presentation with an asynchronous automatic structure, we say that the group is asynchronously automatic.

Remark. While every asynchronously automatic group is automatic, the class of asynchronously automatic groups is strictly larger. In particular, for $p \neq q$, the Baumslag-Solitar group $G_{p,q} = \langle \{x, y\} \mid \{yx^py^{-1}x^{-q}\} \rangle$ is asynchronously automatic, but not automatic.

It would seem natural to go on to define a non-deterministic asynchronously automatic group in a similar fashion. However, in [6], Shapiro proved that any such group also admits a (deterministic) asynchronous automatic structure. For this reason, we work with deterministic asynchronous automatic structures throughout.

One particular type of asynchronous automaton, defined in [1], will be useful in our study of asynchronously automatic groups.

Definition. An asynchronous automaton is bounded with boundedness factor k if that the automaton never reads more than k letters in a row from any of its tapes. We say that an asynchronous automatic structure is bounded asynchronous if each of its multiplier automata are bounded.

Theorem 5 (Epstein, et. al [1]). Let G be a group with an asynchronous automatic structure given by an alphabet A, a word acceptor W, and multiplier automata M_x for $x \in A \cup \{\epsilon\}$. Then G has a boundedly asynchronous automatic structure over A, with a language that is a subset of $L(W)$. Moreover, there is an effective procedure for constructing the boundedly asynchronous automatic structure from the original structure, and this procedure does not depend on G.

15
4.2 Recovering a group from an asynchronous automatic structure

Much work has been done on understanding which groups have an automatic structure. In parallel, the problem has been investigated in reverse: given a set of automata over an alphabet A, how can one tell if they are the (asynchronously) automatic structure of some finitely presented group?

In [1], Epstein, et. al answered this question in the case of synchronous automatic structures. In particular, they gave a set of 13 axioms, each of which are statements about the automata W, M_x, such that the automata are the automatic structure of some group if and only if all 13 axioms are satisfied. Moreover, these axioms are decidable predicates (that is, there is an algorithm that returns 1 if the predicate is true and 0 if the predicate is false), and they give an algorithm for finding a finite presentation of the group when it exists.

We now provide a similar result in the case of asynchronous automata. In light of Theorem 5, we only consider the case in which the multiplier automata are bounded.

Theorem 6. Let A be a finite alphabet, let W be a finite state automaton accepting the regular language $L = L(W)$, and let $\{M_x\}$ be a collection of two-tape boundedly asynchronous automata for each $x \in A \cup \{\epsilon\}$. Then there is a group G for which W and $\{M_x\}$ form an asynchronous automatic structure for G if and only if the following axioms hold:

1. $(\exists w)(w \in L)$.
2. For each $x \in A \cup \{\epsilon\}$, $(\forall w, v)(((w, v) \in L_x) \implies w \in L \land v \in L)$.
3. $(\forall w)(w \in L \implies (w, w) \in L_e)$.
4. $(\forall u, v)((u, v) \in L_e \implies (v, u) \in L_e)$.
5. $(\forall u, v, w)(((u, v) \in L_e \land (v, w) \in L_e) \implies (u, w) \in L_e)$.
6. For each $x \in A$, $(\forall u)(u \in L \implies (\exists v)((u, v) \in L_x))$.
7. For each $x \in A$, $(\forall u, v, w)(((u, v) \in L_x \land (u, w) \in L_x) \implies (v, w) \in L_x)$.
8. For each $x \in A$, $(\forall u, v, w)(((u, v) \in L_e \land (u, w) \in L_x) \implies (v, w) \in L_x)$.
9. For each $x \in A$, $(\forall u, v, w)(((u, v) \in L_x \land (v, w) \in L_e) \implies (u, w) \in L_x)$.
10. For each $x \in A$, $(\forall u, v, w)(((u, v) \in L_x \land (u, w) \in L_x) \implies (v, w) \in L_x)$.
11. For each $x \in A$, $(\forall u, v, w)(((u, v) \in L_e \land (v, w) \in L_x) \implies (u, w) \in L_x)$.
12. For a word $w = x_1 \ldots x_n$ with each $x_i \in A$, we write $[v]_{\varphi_w} = [u]$ to denote the statement
\[(\exists v_1, \ldots, v_{n-1})((v, v_1) \in L_{x_1} \land (v_1, v_2) \in L_{x_2} \land \cdot \cdot \cdot \land (v_{n-1}, u) \in L_{x_n}).\]

Then
\[(\forall u, w, w')(uw \in L \land uw' \in L) \implies (\forall u)([v]_{\varphi_w} = [uw] \iff [v]_{\varphi_w'} = [uw']).\]

13. Let c be the maximum number of states in any of W, M_x, M_e, and let k be the largest boundedness factor of any M_x or M_e. For each word w over A of length at most $2c + 2k$,
\[(\exists u)([u]_{\varphi_w} = [u]) \implies (\forall u)([u]_{\varphi_w} = [u]).\]
Remark. If we are given a collection of (possibly) unbounded asynchronous automata, we can first apply the algorithm given by Theorem 5, check if the resulting automata are bounded (by looking for loops entirely contained in the left or right state set) and then apply Theorem 6. Thus, if Axioms 1-13 are decidable for bounded asynchronous automata, then the problem of recovering a group from (possibly unbounded) asynchronous automata is decidable as well.

It is easily verified that a bounded asynchronous automatic structure of a group must satisfy each of the axioms of Theorem 6. In order to prove the reverse direction, we first prove several lemmas.

Notation. Throughout the remainder of this section, let \(A \) be a finite inverse-closed alphabet, \(L = L(W) \) and \(L_x = L(M_x) \) for each \(x \in A \cup \{ \epsilon \} \), where \(W \) is a finite state automaton and each \(M_x \) is a bounded asynchronous automaton over \(A \) such that \(L \) and \(L_x \) satisfy Axioms 1-13.

By Axioms 3-5, we may partition \(L \) into a set of equivalence classes \(X \) under the equivalence relation \(u \sim v \) if and only if \((u, v) \in L_x \). We write \([u] \) to denote the equivalence class of a word \(u \in L \).

Lemma 2. For each \(x \in A \), there exist unique invertible maps \(\varphi_x : X \to X \) (acting on the right) such that for any \(u, v \in L \), \([u]\varphi_x = [v]\) if and only if \((u, v) \in L_x \).

Proof. Fix \(x \in A \). For each \(u \), we can use Axiom 6 to choose a word \(v \in L \) such that \((u, v) \in L_x \), and define a map \(s_x : L \to L \) by \(us_x = v \). Then by Axiom 7, the induced map \(s'_x : L \to X \) defined by \(us'_x = [v] \) is independent of our original choice of \(v \). By Axiom 8, if \(u \) and \(w \) are in the same equivalence class then \(s'_x \) maps them to the same equivalence class \([v]\), and so \(s'_x \) restricts to a map \(\varphi_x : X \to X \) having the desired property. Finally, Axiom 7 shows that this map is unique.

Axioms 9-11 similarly define maps \(\mu_x : X \to X \) for which \([v]\mu_x = [u]\) if and only if \((u, v) \in L_x \). Then \(\mu_x = \varphi_x^{-1} \) for each \(x \), and so we see that the maps \(\varphi_x \) are invertible, as desired. \(\square \)

This lemma, combined with Axiom 12, allows us to extend the notion of an equivalence class to the prefix closure of \(L \), which we denote by \(\overline{L} \), as follows. For each prefix \(u \) of a word \(uw \) in \(L \), define \([u] = [uw]\varphi^{-1}_{w} \).

Axiom 12 shows that this is a well-defined equivalence class.

Notation. If \(w = x_1 \cdots x_n \) is a word over \(A \), we define \(\varphi_w = \varphi_{x_1} \varphi_{x_2} \cdots \varphi_{x_n} \).

Note that \(\varphi_{x^{-1}} = \varphi^{-1}_x \) for any \(x \in A \).

Lemma 3. We have \([\epsilon] \varphi_u = [u] \) for any prefix \(u \in \overline{L} \).

Proof. Notice that if \(uw \in L \), then \([\epsilon] \varphi_{uw} = [uw] \) by the definition of the extension of \(\sim \) to prefixes, and so \([\epsilon] \varphi_u = [uw] \varphi_{w}^{-1} = [u] \). \(\square \)

Finally, define \(H \) to be the group generated by the maps \(\varphi_x \) under composition. Then \(H \) acts on \(X \) on the right. We wish to show that this action is transitive and free, for we can then identify the elements of \(H \) with the elements of \(X \).

Lemma 4. The action of \(H \) on \(X \) is transitive.

Proof. Given two equivalence classes \([u]\) and \([v]\) where \(u, v \in L \), we note that

\[[u] \varphi_u^{-1} \varphi_v = [\epsilon] \varphi_v = [v], \]

and so each equivalence class is mapped to every other under the group action. \(\square \)
To show that the action is free, we first prove the following lemma.

Lemma 5. Suppose \(x \in A \) and \(u, u' \) are words in \(L \) such that \([e] \varphi_u \varphi_x \varphi_u^{-1} = [e]\). Then \(\varphi_u \varphi_x \varphi_u^{-1} \) is the identity in \(H \).

Proof. First note that the assumption implies \([u] \varphi_x = [u']\). Therefore, \((u, u')\) is accepted by the asynchronous automaton \(M_x \). Recall that this assigns a unique shuffle \(a_1a_2 \cdots a_{|u|+|u'|+2} \) to \((u, u')\), and the letters \(a_i \) can be divided into consecutive blocks of letters, each of which corresponds to exactly one of \(u \) or \(u' \). Since \(M_x \) has boundedness factor at most \(k \), each of these blocks has length at most \(k \).

For each \(t \geq 0 \), define \(u(t) \) to be the word formed by the first \(t \) blocks of consecutive letters of \(u \) in the shuffle of \(u \) and \(u' \). Let the blocks of \(u \) be \(B_1, \ldots, B_n \) and those of \(u' \) be \(B'_1, \ldots, B'_{n'} \) (where one of \(B_n \) or \(B'_{n'} \) may be the empty string, depending on the shuffle, and all other blocks are nonempty and of length at most \(k \)). In this notation, we have \(u(t) = B_1 \cdots B_t \) for \(t \leq n \) and \(u(t) = B_1 \cdots B_n \) for \(t > n \).

Note that for each \(t \), at some point in the path accepting \((u, u')\) in \(M_x \) we have traversed a shuffle corresponding to \((u(t), u'(t))\). By removing all loops from this path, the shortest path from this point to the accept state is less than the number of states of \(M_x \), so it is at most \(c - 1 \) where \(c \) is the maximum number of states of any of the automata \(M_x \) or \(M_u \). Thus there exist words \(w_t \) and \(w'_t \) of total length at most \(c - 1 \) for which \((u(t), w_t, u'(t), w'_t) \in L_x \).

Consider the word
\[
r_t := w_t x w'^{-1}_t B^1_{t+1} w'_{t+1} x^{-1} w^{-1}_{t+1} B^1_{t+1}.
\]
This has length at most \(((c - 1) + k) + ((c - 1) + k) + 2c + 2k \). We wish to show it fixes some element of \(X \), in order to apply Axiom 13. Indeed, we have
\[
[u(t)] \varphi_{r_t} = [u(t)] \varphi_{w_t x w'^{-1}_t B^1_{t+1} w'_{t+1} x^{-1} w^{-1}_{t+1} B^1_{t+1}]
\]
\[
= [u(t)] w_t [\varphi_x] [\varphi_w^{-1} B^1_{t+1} w'_{t+1} x^{-1} w^{-1}_{t+1} B^1_{t+1}]
\]
\[
= [u'(t) w'_t] [\varphi_{w'^{-1} B^1_{t+1} w'_{t+1} x^{-1} w^{-1}_{t+1} B^1_{t+1}}]
\]
\[
= [u'(t)] [\varphi_{B^1_{t+1} w'_{t+1} x^{-1} w^{-1}_{t+1} B^1_{t+1}}]
\]
\[
= [u'(t + 1)] [\varphi_{w'^{-1} B^1_{t+1} w'_{t+1} x^{-1} w^{-1}_{t+1} B^1_{t+1}}]
\]
\[
= [u'(t + 1) w'_{t+1}] [\varphi_{w'^{-1} B^1_{t+1} w'_{t+1} x^{-1} w^{-1}_{t+1} B^1_{t+1}}]
\]
\[
= [u'(t + 1)] [\varphi_{B^1_{t+1} w'_{t+1} x^{-1} w^{-1}_{t+1} B^1_{t+1}}]
\]
\[
= [u'(t + 1)] [\varphi_{w'^{-1} B^1_{t+1} w'_{t+1} x^{-1} w^{-1}_{t+1} B^1_{t+1}}]
\]
and so, by Axiom 13, \(\varphi_{r_t} \) is the identity in \(H \). It follows that for each \(t = 1, 2, \ldots, n - 1 \), we have
\[
[\varphi_{w_t x w'^{-1}_t B^1_{t+1} w'_{t+1} x^{-1} w^{-1}_{t+1} B^1_{t+1}}] = [\varphi_{B^1_{t+1}}]
\]
and similarly
\[
[\varphi_{B^1_{t+1} w'_{t+1} x^{-1} w^{-1}_{t+1} B^1_{t+1}}] = [\varphi_{B^1_{t+1}}]
\]
Multiplying these \(n \) equations together, we find
\[
[\varphi_{B^1_{n+1} \cdots B^1_{n} x^{-1} w^{-1}_{1} B^1_{1} w'_{1} x^{-1} w'^{-1}_1 B'^1_{1} \cdots B'^1_{n'}}] = [\varphi_{B^1_{n+1} \cdots B^1_{n} x^{-1} w^{-1}_{1} B^1_{1} w'_{1} x^{-1} w'^{-1}_1 B'^1_{1} \cdots B'^1_{n'}}]
\]
so \(\varphi_{u' x^{-1} w^{-1}_1} = \varphi_u \), and thus \(\varphi_{u' x^{-1} w^{-1}_1} \) is the identity, as desired.
Lemma 6. The action of H on X is free.

Proof. Note that it suffices to show that, for all words v,

$$ [e] \varphi_v = [e] \implies (\forall u)[u] \varphi_v = [u]. $$

For, if this holds, then if $u \in \mathcal{L}$ is such that $[u] \varphi_w = [u]$, we have $[e] \varphi_u \varphi_w \varphi^{-1}_u = [e]$, so $\varphi_u \varphi_w \varphi^{-1}_u = \text{id}$, and hence $\varphi_w = \varphi^{-1}_u \varphi_u = \text{id}$ as well.

Let w be an arbitrary word that fixes the basepoint $[e]$, that is, $[e] \varphi_w = [e]$. (Note that such a word w must exist by Lemma 4.) Write w in a reduced form $x_1x_2 \cdots x_n$ where each $x_i \in A \cup A^{-1}$, and there are no pairs of consecutive letters of the form xx^{-1} or $x^{-1}x$.

By our definition of the equivalence relation on \mathcal{L}, each equivalence class can be represented by an element of \mathcal{L}, so for each $t = 1, \ldots, n-1$, there is some word $u_t \in \mathcal{L}$ such that

$$ [u_t] = [e] \varphi_{x_1 \cdots x_t} = [e] \varphi_w(t) = [w(t)]. $$

Also set $u_0 = u_n = e$.

Then

$$ [e] \varphi_{u_t} \varphi_{x_{t+1}} \varphi^{-1}_{u_{t+1}} = [u_t] \varphi_{x_{t+1}} \varphi^{-1}_{u_{t+1}} = [w(t)] \varphi_{x_{t+1}} \varphi^{-1}_{u_{t+1}} = [u_{t+1}] \varphi^{-1}_{u_{t+1}} = [e]. $$

By Lemma 5, we have that $\varphi_{u_t} \varphi_{x_{t+1}} \varphi^{-1}_{u_{t+1}}$ is the identity in H. Multiplying these together over $t = 0, \ldots, n-1$ yields

$$ \varphi_{u_0} \varphi_{x_1} \varphi^{-1}_{u_1} \varphi_{u_1} \varphi_{x_2} \cdots \varphi_{x_n} \varphi^{-1}_{u_n} = \text{id}, $$

which simplifies to

$$ \varphi_{x_1 \cdots x_n} = \text{id}. $$

Thus $\varphi_w = \text{id}$, as desired. \square

We now prove Theorem 6.

Proof. Let $G = H$ be the group having the transitive and free action on X described in Lemma 6. Since the action is transitive and free, we may identify the elements of G bijectively with the elements of X, as follows. Identify the identity element of G with $[e]$, and for each $g \in G$, identify g with $[e]g$. Then transitivity gives that this identification is surjective, and freedom gives that this identification is injective, and thus it is a well defined bijection.

It follows that the action of G on X is isomorphic to the action of G on itself by right multiplication. Therefore, M_x accepts precisely the pairs of words representing elements of G that differ by the generator x in the Cayley graph for each x, and M_x accepts the pairs of words in \mathcal{L} representing the same element of G. It follows that L, M_x form an asynchronous automatic structure for G, as desired. \square
4.3 Decidability

In this section, we assume basic familiarity with decidable predicates. For a thorough introduction to this topic, see [2].

In [1], Epstein, et. al gave a set of axioms, each of which are first-order sentences involving regular predicates, that allow one to recover a group from a set of synchronous automata if all the axioms are decidable true, or determine that there is no such group if one of the axioms is decidable false. In Theorem 6, we have given a similar set of axioms for recovering a group from a set of asynchronous automata, each of which are first-order sentences involving quasi-regular predicates. Since regular predicates are closed under first order operations, the axioms for synchronous automata are regular and therefore decidable, but it is less clear whether the axioms of Theorem 6 are quasi-regular, or even decidable. We now investigate the decidability of Axioms 1-13.

Adopting the terminology in [2], we say that a statement is partially decidable if there is an algorithm that halts and outputs true if the statement is true, and does not halt if the statement is false.

Theorem 7. Let $P(W, \{M_x\})$ denote the statement: “The finite state automaton W over the alphabet A and asynchronous automata M_x over A, one for each $x \in A \cup \{\varepsilon\}$, do not form the asynchronous automatic structure of any finitely presented group.” Then P is partially decidable.

We first show that Axioms 1, 2, 6, and 9 are decidable.

Lemma 7. Let W be a finite state automaton over A, and let M_x for each $x \in A \cup \{\varepsilon\}$ be asynchronous automata over A. Then Axioms 1, 2, 6, and 9 are decidable predicates.

Proof. Note that Axiom 1 is a regular predicate and is therefore decidable.

For Axiom 2, we can simplify the statement as follows:

\[
(\forall w_1, w_2)((w_1, w_2) \in L_x) \implies (w_1 \in L \land w_2 \in L)
\]

\[
\neg (\exists w_1, w_2)[[(w_1, w_2) \in L_x] \land (w_1 \not\in L \lor w_2 \not\in L)]
\]

\[
\neg (\exists w_1, w_2)[[(w_1, w_2) \in L_x] \land (w_1 \not\in L) \lor ((w_1, w_2) \in L_x) \land (w_2 \not\in L)]
\]

\[
\neg \left((\exists w_1)((\exists w_2)((w_1, w_2) \in L_x) \land (w_1 \not\in L)) \lor [(\exists w_1, w_2)((w_1, w_2) \in L_x \land (w_2 \not\in L))] \right)
\]

In the last formulation of the statement above, the smaller statements $(\exists w_2)((w_1, w_2) \in L_x)$ and $(\exists w_1)((w_1, w_2) \in L_x)$ define regular languages in the variables w_1 and w_2 respectively, by part (f) of Proposition 1. The statements $w_1 \not\in L$ and $w_2 \not\in L$ are regular as well, since regular predicates are closed under negation. Thus we have rewritten the original statement as a first-order statement involving regular predicates, which is regular and hence decidable.

Axioms 6 and 9 can similarly be stated in terms of regular predicates. This completes the proof.

We now prove Theorem 7.

Proof. By Lemma 7, the negations of Axioms 1, 2, 6, and 9 are decidable, and hence partially decidable.

We now show that the negation of Axiom 3, that is,

\[
(\exists w)(w \in L \land (w, w) \not\in L_x)
\]

is partially decidable. Indeed, we can order the words in A^* in length-lexicographic order (with respect to some ordering of A), and check in order if each satisfies $w \in L \land (w, w) \not\in L_x$ by passing w and (w, w)
through the automata W and M_x, respectively. When we reach a word w that satisfies the two conditions, we stop, and otherwise we check the next word in the length-lexicographic ordering. This procedure halts if the statement is true, and runs indefinitely if it is false, as desired.

This argument can be easily modified to show that Axioms 4, 5, 7, 8, 10, and 11 are partially decidable.

We next show that the statement “Either Axiom 9 is false or Axiom 12 is false” is partially decidable. Consider the natural product ordering of $(A^*)^4$ that arises from the length-lexicographic ordering of A^*. We apply the following procedure to the 4-tuples (u, w, w', v) in $(A^*)^4$ in order. We use W to check if uw and uw' are in L. If not, we go on to the next 4-tuple.

If uw and uw' are both in L, then we check the validity of each of the statements $[v] \varphi_w = [uw]$ and $[v] \varphi_{w'} = [uw']$. Let x_1, x_2, \ldots, x_n be the letters of w. We first check if there is some v_1 for which $(v, v_1) \in L_{x_1}$.

Continuing in this fashion, if we have chosen a word v_i, we determine whether there is some v_{i+1} with $(v_i, v_{i+1}) \in L_{x_{i+1}}$ for $i \leq n - 1$. If at the nth step we obtain a word v_n, we check if $(v_n, uw) \in L_x$. If so, the statement $[v] \varphi_w = [uw]$ is true, and if not, it is false. We similarly check the validity of $[v] \varphi_{w'} = [uw']$. If both are true or both are false, we go on to the next 4-tuple. Otherwise, we halt, as this proves the negation of Axiom 12. Thus, the statement “Either Axiom 9 is false or Axiom 12 is false” is partially decidable.

We next show that “Either Axiom 9 is false or Axiom 13 is false” is partially decidable. For each fixed w with length at most $2c + 2k$, we check all u in the prefix closure of L to determine if $[u] \varphi_w = [u]$, with a procedure that halts if Axiom 9 is false, as before. If we find two strings u, v such that the $[u] \varphi_w = [u]$ but $[v] \varphi_w \neq [v]$, we halt; Axiom 13 is false. Otherwise, our procedure runs indefinitely.

Finally, by Theorem 6, the statement $P(W, \{M_x\})$ is equivalent to the statement:

“Axiom 1 is false or Axiom 2 is false or ... or Axiom 13 is false,”

which can be rewritten as

“Axiom 1 is false or Axiom 2 is false or ... or (Axiom 9 is false or Axiom 12 is false) or (Axiom 9 is false or Axiom 13 is false).”

The latter is partially decidable, as we can run each of our above procedures in parallel.

5 Future Work

It remains to be shown whether all of the Axioms of Theorem 6 are decidable. To do so, it would be useful to further understand the closure properties of quasi-regular and weakly regular predicates, as either can be used to define asynchronously automatic groups. (See [6])

We have shown that quasi-regular languages are closed under complementation but not under union, and weakly regular languages are closed under union but not under complementation. Thus, it may also be of interest to investigate intermediate classes of languages in order to find one that is closed under both complementation and union. For instance, the class of all finite unions of quasi-regular languages is larger than the class of quasi-regular languages and smaller than that of weakly regular languages, and it is closed under union (though not under complementation).
Another possible method for proving decidability is to modify the Axioms. For instance, in Axiom 13 we have used the property that the multiplier automata are bounded to obtain an upper bound on the length of the words w that we need to check. It is plausible that similar methods may be used to modify, say, Axiom 3, which is equivalent to the statement $\neg(\exists w \in L)((w, w) \notin L_\epsilon)$, so that it instead states $\neg(\exists w \in L, |w| < f(k, c))(w, w) \notin L_\epsilon$ for some computable function $f(k, c)$, where k is the boundedness factor of M_ϵ and c is the number of states of M_ϵ. This modified axiom would then be decidable.

Finally, we note that Rubin [5] defined a generalized notion of quantifiers, and classified the unary quantifiers that preserve regularity. It would be of interest to study which generalized quantifiers preserve quasi-regular and weakly regular predicates.

6 Acknowledgments

I thank my supervisor, Mia Minnes, for her teaching and guidance throughout the course of this research. I also thank the Colorado State University mathematics colloquium for the opportunity to give a talk on this research. Finally, I thank Paul Christiano and Derek Holt for numerous helpful conversations and for catching minor errors.

References

