Parameterizations and Polar Coordinates

Math 53, section 213

September 5, 2014

Problems on parametric equations

- 1. Let C be the curve $x = 2\cos t$, $y = \sin t$.
 - (a) What kind of curve is this? Sketch the curve.
 - (b) Find the slope of the tangent line to the curve when t = 0, $t = \pi/4$, and $t = \pi/2$.
 - (c) Find the area of the region enclosed by C.
- 2. Compute the arc length of the curve parameterized by $x = \cos(e^t)$, $y = \sin(e^t)$, $0 \le t \le 1$. (Hint: Reparameterize.)
- 3. The orbit of the moon around the sun: The earth travels around the sun once every year, and the moon travels around the earth approximately once every 1/13 of a year. Find a parametric equation that describes the orbit of the moon around the sun (with the sun at the origin).

Problems on polar coordinates

- 1. Sketch the following curves given by equations in polar coordinates. (Taken from problem 54 in section 10.3)
 - (a) $r = \sqrt{\theta}$
 - (b) $r = \theta^2$
 - (c) $r = 2 + \sin(3\theta)$
 - (d) $r = 1 + 2\sin(3\theta)$
- 2. Find a polar coordinates equation that describes a flower-like shape with five "petals".