Quiz 6

Math 53, section 213

October 29, 2014

1. Use a double integral to find the area of the region of points that lie inside the circle $(x-1)^{2}+y^{2}=1$ and outside the circle $x^{2}+y^{2}=1$.

Solution: The first circle can be expressed in polar coordinates as $r=$ $2 \cos \theta$, and the second is $r=1$. The circles intersect at $(1 / 2, \pm \sqrt{3} / 2)$, which are at angles $\pm \pi / 3$ from horizontal. Therefore, the integral can be expressed as

$$
\begin{aligned}
\int_{-\pi / 3}^{\pi / 3} \int_{1}^{2 \cos \theta} r d r d \theta & =\left.\int_{-\pi / 3}^{\pi / 3} \frac{1}{2} r^{2}\right|_{1} ^{2 \cos (\theta)} d \theta \\
& =\int_{-\pi / 3}^{\pi / 3} 2 \cos ^{2}(\theta)-\frac{1}{2} d \theta \\
& =\int_{-\pi / 3}^{\pi / 3} \cos (2 \theta)+1-\frac{1}{2} d \theta \\
& =\pi / 3+\left.\frac{1}{2} \sin (2 \theta)\right|_{-\pi / 3} ^{\pi / 3} \\
& =\pi / 3+\sqrt{3} / 2 .
\end{aligned}
$$

2. Find the surface area of the part of the plane $3 x+2 y+z=6$ that lies in the first octant.
Solution: The plane intersects the first octant in a triangle with vertices $(2,0,0),(0,3,0)$, and $0,0,6$ since these are the intercepts with the positive x, y, and z axes respectively. Thus this is the surface area of the part of the surface $z=6-3 x-2 y$ over the region $0 \leq x \leq 2,0 \leq y \leq 3-3 x / 2$.
The derivatives of the function $6-3 x-2 y$ in the x and y directions are -3 and 2 , and so the surface area is

$$
\int_{0}^{2} \int_{0}^{3-3 x / 2} \sqrt{1+(-3)^{2}+\left(-2^{2}\right)} d y d x=3 \sqrt{14}
$$

