Quiz 5

Math 53, section 213

October 15, 2014

1. Find the volume of the solid that lies under the plane $4 x+6 y-2 z+15=0$ and above the rectangle $R=\{(x, y) \mid-1 \leq x \leq 2,-1 \leq y \leq 1\}$.
Solution: Solving for z, we find that $z=2 x+3 y+15 / 2$ is the function defining the plane. To find the volume under this plane over the region R, first note that it is always positive on this region: the smallest z can be over R is when $x=y=-1$, in which case $z=2.5>0$. Thus the volume is the double integral over the rectangle of the function z of x and y :

$$
\begin{aligned}
\int_{-1}^{2} \int_{-1}^{1} 2 x+3 y+15 / 2 d y d x & =\left.\int_{-1}^{2}\left(2 x y+3 y^{2} / 2+15 y / 2\right)\right|_{-1} ^{1} d x \\
& =\int_{-1}^{2} 4 x+15 d x \\
& =\left.\left(2 x^{2}+15 x\right)\right|_{-1} ^{2} \\
& =2 \cdot(4-1)+15 \cdot(2-(-1)) \\
& =51
\end{aligned}
$$

So, the volume is 51 .
2. Evaluate the double integral

$$
\iint_{D} 2 x y d A
$$

where D is the triangular region with vertices $(0,0),(1,2)$, and $(0,3)$.
Solution: The triangle can be realized as the region bounded by the functions $2 x$ and $3-x$ on the interval $0 \leq x \leq 1$. So, the integral of $2 x y$ over this region is

$$
\begin{aligned}
\int_{0}^{1} \int_{2 x}^{3-x} 2 x y d y d x & =\left.\int_{0}^{1} x y^{2}\right|_{2 x} ^{3-x} d x \\
& =\int_{0}^{1} x(3-x)^{2}-x(2 x)^{2} d x \\
& =\int_{0}^{1} 9 x-6 x^{2}-3 x^{3} d x \\
& =\frac{9}{2} x^{2}-2 x^{3}-\left.\frac{3}{4} x^{4}\right|_{0} ^{1} \\
& =\frac{9}{2}-2-3 / 4 \\
& =7 / 4
\end{aligned}
$$

