Quiz 3

Math 53, section 213

September 22, 2014

1. Find parametric equations for the tangent line to the curve given by parametric equations

$$
x=1+2 \sqrt{t}, y=t^{3}-t, z=t^{3}+t
$$

at the point $(3,0,2)$.
Solution: To find the direction of the tangent line, we can take the derivative of the vector function with respect to t, to obtain

$$
\left\langle\frac{1}{\sqrt{t}}, 3 t^{2}-1,3 t^{2}+1\right\rangle
$$

for the derivative at time t. The point $(3,0,2)$ lies on the curve exactly at time $t=1$ (and no other times), and so the tangent vector at this point is $\langle 1,2,4\rangle$. Therefore, a vector equation for the tangent line is given by $\langle 3,0,2\rangle+s \cdot\langle 1,2,4\rangle$. Turning this into a parametric equation we have

$$
x=3+s, y=2 s, z=2+4 s .
$$

2. Find the limit, if it exists, or show that the limit does not exist:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-4 y^{2}}{x^{2}+2 y^{2}} .
$$

Solution: Fixing $x=0$ and taking the limit as $y \rightarrow 0$ we find that the limit evaluates to $-4 / 2=-2$. But fixing $y=0$ and taking the limit as $x \rightarrow 0$ we find that the limit is 0 . Since the limit is different along two different paths towards $(0,0)$, the limit does not exist.

