Quiz 2

Math 53, section 213

September 15, 2014

1. Find two unit vectors orthogonal to both $\langle 3,2,1\rangle$ and $\langle-1,1,0\rangle$.

Solution: The cross product of the two vectors is $\langle 1,1,-5\rangle$, so this vector is orthogonal to both. To make it a unit vector, we can divide by its length, $3 \sqrt{3}$, to get that $\langle\sqrt{3} / 9, \sqrt{3} / 9,-5 \sqrt{3} / 9\rangle$ is a unit vector orthogonal to both the original vectors. To obtain another such vector we may simply negate this unit vector to obtain $\langle-\sqrt{3} / 9,-\sqrt{3} / 9,5 \sqrt{3} / 9\rangle$, which is another unit vector orthogonal to both $\langle 3,2,1\rangle$ and $\langle-1,1,0\rangle$.
2. Find an equation describing the plane passing through the point $(1,-1,-1)$ and parallel to the plane $5 x-y-z=6$.

Solution: The planes parallel to $5 x-y-z=6$ can all be written in the form $5 x-y-z=a$ for some constant a, since they must have the same normal vector $\langle 5,-1,-1\rangle$. The value of a for which the plane passes through $(1,-1,-1)$ is $a=7$. Therefore the equation of this plane is

$$
5 x-y-z=7
$$

