Quiz 1

Math 53, section 213

September 10, 2014

1. For the parametric curve given by $x=t^{2}+1, y=t^{2}+t$, find $d y / d x$ and $d^{2} y / d x^{2}$ (when they exist) in terms of t. For which values of t is the curve concave upward?

Solution: We have $\frac{d x}{d t}=2 t$ and $\frac{d y}{d t}=2 t+1$, so

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{2 t+1}{2 t}=1+\frac{1}{2} t^{-1} .
$$

Then, using the fact that $\frac{d^{2} y}{d x^{2}}$ is the derivative $\frac{d}{d x} \frac{d y}{d x}$, we obtain

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}(d y / d x)}{d x / d t}=\frac{-t^{-2} / 2}{2 t}=-t^{-3} / 4 .
$$

The curve is concave upward precisely when the second derivative is positive, i.e. when

$$
-t^{-3} / 4>0
$$

The left hand side is positive precisely when $t<0$.
2. Identify the curve

$$
r^{2} \cos (2 \theta)=1
$$

by finding a Cartesian equation for the curve.

Solution: We can first expand $\cos (2 \theta)$ as $\cos ^{2}(\theta)-\sin ^{2}(\theta)$ to rewrite the equation as

$$
r^{2} \cos ^{2}(\theta)-r^{2} \sin ^{2}(\theta)=1
$$

Then since $x=r \cos (\theta)$ and $y=r \sin (\theta)$ we have $x^{2}=r^{2} \cos ^{2}(\theta)$ and $y^{2}=r^{2} \sin ^{2}(\theta)$. Substituting into the equation above, we obtain the equation $x^{2}-y^{2}=1$, which is a hyperbola.

