Midterm 1 Review

Math 53, section 213

October 6, 2014

1. Find the length of the curve given by $x=3 t^{2}, y=2 t^{3}, 0 \leq t \leq 2$.

Solution:The length is $\int_{0}^{2} \sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t$. We can evaluate this using u substitution:

$$
\begin{aligned}
\int_{0}^{2} \sqrt{(6 t)^{2}+\left(6 t^{2}\right)^{2}} d t & =\int_{0}^{2} 6 t \sqrt{1+t^{2}} d t \\
& =\left.3 \cdot \frac{2}{3}\left(1+t^{2}\right)^{3 / 2}\right|_{0} ^{2} \\
& =2 \cdot(1+4)^{3 / 2}-2 \cdot(1+0)^{3 / 2} \\
& =10 \sqrt{5}-2
\end{aligned}
$$

2. Compute the cross product of $\langle 1,1,-1\rangle$ and $\langle 2,4,6\rangle$. What is the area of the parallelogram spanned by these vectors?
Solution: The area of the parallelogram is the length of the cross product. The cross product of the two vectors is

$$
\operatorname{det}\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & -1 \\
2 & 4 & 6
\end{array}\right)=10 \mathbf{i}-8 \mathbf{j}+2 \mathbf{k} .
$$

So, the area is the length of this vector: $\sqrt{100+64+4}=\sqrt{168}$.
3. Find an equation for the plane passing through $(1,2,-2)$ that contains the line $x=2 t, y=3-t, z=1+3 t$.
Solution: Choose two points on the line, say at $t=0$ and $t=1$. These are the points $A=(0,3,1)$ and $B=(2,2,4)$. Let $C=(1,2,-2)$ be the other point on the plane. Then the normal vector to the plane is the cross product
of two of the vectors that lie in the plane, say $B-A$ and $C-A$. We have $B-A=(2,-1,3)$ and $C-A=(1,-1,-3)$. Their cross product is

$$
\operatorname{det}\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & -1 & 3 \\
1 & -1 & -3
\end{array}\right)=6 \mathbf{i}+3 \mathbf{j}-\mathbf{k}
$$

Thus the equation of the plane is $6 x+3 y-z=c$ for some c. Since $(1,2,-2)$ lies in the plane, it follows that $c=6+6-2=10$, so the equation is $6 x+3 y-z=10$.
4. Evaluate the following limit or show that it does not exist:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y^{2}} .
$$

What about the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{x^{2}-y^{2}} ?
$$

Solution: The first limit is 0 , which can be shown by setting $x=r \cos (\theta)$ and $y=r \sin (\theta)$ and taking the limit as $r \rightarrow 0$. The second limit does not exist since if we approach $(0,0)$ along the y-axis or x-axis respectively we get limits of 1 and -1 .
5. Find all second partial derivatives of $f(x, y, z)=x^{k} y^{l} z^{m}$.

Solution: There are six distinct second partial derivatives: $f_{x x}, f_{y y}, f_{z z}$, $f_{x y}, f_{y z}, f_{x z}$. We will compute only $f_{x x}$ and $f_{x y}$; the others are similar. We have $f_{x x}=k(k-1) x^{k-2} y^{l} z^{m}$ (notice that this is correct even when k is 0 or 1) and $f_{x y}=k l x^{k-1} y^{l-1} z^{m}$.
6. Find equations of the tangent plane and the normal line to the surface $x y+y z+z x=3$ at the point $(1,1,1)$.

Solution: The gradient vector at this point is $(2,2,2)$, so the tangent plane is $2 x+2 y+2 z=6$ (or to simplify, $x+y+z=3$) and the normal line is $x=y=z=1+2 t$.
7. Find the maximum rate of change of $f(x, y)=x^{2} y+\sqrt{y}$ at the point $(2,1)$. In which direction does it occur?

Solution: The maximum rate of change occurs in the direction of the gradient vector, which at this point is $(4,9 / 2)$. The length of this vector is $\frac{1}{2} \sqrt{145}$, and so this is the maximum rate of change. The unit vector in this direction is $\frac{1}{\sqrt{145}}(8,9)$.
8. Find the critical points (local maxima, minima, and saddle points) of the function $f(x, y)=x^{3}-6 x y+8 y^{3}$.
Solution: The critical points occur when both partial derivatives f_{x} and f_{y} are zero. The partial derivatives are $3 x^{2}-6 y$ and $-6 x+24 y^{2}$ respectively. Setting these equal to zero we get $x^{2}=2 y$ and $x=4 y^{2}$. Thus $16 y^{4}=2 y$ and so y is either 0 or $1 / 2$. If y is 0 then x is 0 ; otherwise x is 1 . So the two critical points are $(0,0)$ and $(1,1 / 2)$.
We can then use the second derivative tests to see if these are maxima, minima, or saddle points. The second derivatives are $f_{x x}=6 x, f_{y y}=48 y$, and $f_{x y}=-6$. At the point $(0,0)$ we have that $f_{x x}$ and $f_{y y}$ are both 0 and $f_{x y}=-6$; this means $f_{x x} \cdot f_{y y}-f_{x y}^{2}<0$ and so it is a saddle point. At $(1,1 / 2)$ we have that $f_{x x} \cdot f_{y y}-f_{x y}^{2}=6 \cdot 24-6^{2}>0$, and since $f_{x x}>0$ this means it is a local minimum.

