Midterm 1 Review Worksheet

Math 1A, section 103

February 13, 2014

- 0. (Warmup.) What is $\lim_{x\to 1} x$?
- 1. Can you prove that $\lim_{x\to 1} x = 1$ using the ϵ , δ definition of a limit?
- 2. Find the domain of the function $\sqrt{x} + \log(3 x)$.
- 3. Find a formula for the inverse of the function $f(x) = 2^{3^x}$. What is the domain of f^{-1} ?
- 4. Evaluate the limit

$$\lim_{x \to 5} \frac{x^2 - 25}{x - 5}$$

5. Evaluate the limit

$$\lim_{x \to 5} \frac{2^x}{x-5}$$

- 6. Show that the equation $\cos(x) = x$ has at least one positive real solution.
- 7. Show that $\lim_{x\to 0^+} \log_{10}(2x) = -\infty$ using the definition of a limit.
- 8. We know that $\lim_{x\to 10} \log_{10}(x) = 1$. Given $\epsilon > 0$ with $\epsilon < 1$, find δ so that whenever $|x 10| < \delta$, we can guarantee that $|\log_{10}(x) 1| < \epsilon$.
- 9. Valentine's Day Bonus: Is there a function whose graph looks like a heart? Why or why not? Can you find an explicit *equation* whose graph looks like a heart? (For instance, the graph of $x^2 + y^2 = 1$ is a circle, which is getting close.)