Substitution in Integrals

Math 1A, section 103

April 24, 2014
0. (Warmup.) Find the integral

$$
\int x^{2} d x
$$

1. Compute

$$
\int \tan ^{2}(x) \sec ^{2}(x) d x
$$

2. Evaluate the definite integral

$$
\int_{0}^{1} \frac{e^{5 x}}{1+e^{5 x}} d x
$$

3. (a) Evaluate

$$
\int \sin ^{3}(x) d x
$$

by writing $\sin ^{2}(x)=1-\cos ^{2}(x)$ and making a substitution.
(b) Use a similar method to evaluate

$$
\int \sin ^{5}(x) d x
$$

(c) What goes wrong when you try to use this method on

$$
\int \sin ^{2}(x) d x ?
$$

(d) Recall the trig identities $\sin ^{2}(x)=\frac{1-\cos (2 x)}{2}$ and $\cos ^{2}(x)=\frac{1+\cos (2 x)}{2}$. Use these to compute

$$
\int \sin ^{2}(x) d x
$$

4. (Challenge problem.) Pretend it is 5000 BC and no humans yet know the area of a circle. How could you figure out the area of a circle of radius 1 using integrals? Try to evaluate the integral using "reverse u-substitution", that is, express your integral using the variable u, and make the substitution $u=\sin (x)$ to express it as an integral over x.
