Integration tips and tricks

Math 1A, section 103
April 15, 2014
0. (Warmup.) Find $\int_{0}^{1} x d x$.

1. What is $\int_{-3}^{3} \sqrt{9-x^{2}} d x$? (Tip: Sometimes it's easier to compute an area under a curve than to find the antiderivative.)
2. Sometimes it helps to simplify an expression before you integrate it. Use this principal to evaluate

$$
\int_{1}^{5} \frac{x^{2}+5 x+6}{x^{2}+3 x} d x
$$

3. Look for familiar derivatives in other integral problems:
(a) $\int_{1}^{2} \frac{2}{x} d x$
(b) $\int_{1}^{2} \frac{3}{1+x^{2}} d x$
(c) $\int_{1}^{2} \cos (\sin (x)) \cdot \cos (x) d x$
4. Let's see if you can do this one without any tips. Evaluate

$$
\int_{0}^{\pi / 3} \frac{\sin (\theta)+\sin (\theta) \tan (\theta)}{\sec ^{2}(\theta)} d \theta
$$

5. Rejoice in your newfound power of prophecy! Suppose you throw a ball upward in the air from a starting height of 2 meters and a starting velocity of 3 meters per second. Given that the Earth's gravity causes the ball to have a constant acceleration of $-9.8 \mathrm{~m} / \mathrm{s}^{2}$, how long will it take for the ball to reach the ground?
