Final Review Worksheet

Math 1A, section 103

May 4, 2014
0. (Warmup.) What is $\lim _{x \rightarrow 2} x^{2}+1$?

Solution: The function is continuous, so we can just plug in $x=2$ to get an answer of 5 .

1. Find $\lim _{x \rightarrow \infty} \frac{4 x^{2}+x+1}{x^{2}+3 x+5}$.

Solution: Dividing top and bottom by x^{2}, we see that all terms go to 0 except the leading terms, and so the limit is $4 / 1=4$.
2. Find the derivative of $f(x)=\ln (1-\sin (x))$. What is the domain of f ?

Solution: The derivative is, by the chain rule, $\frac{1}{1-\sin (x)} \cdot(-\cos (x))=\frac{\cos (x)}{\sin (x)-1}$. Since \ln is defined on the positive real numbers, the domain consists of all points x for which $1-\sin (x)>0$, or $1>\sin (x)$. This is true for all real numbers x except for those at which $\sin (x)=1$, namely the numbers of the form $\frac{\pi}{2}+2 \pi k$ for integers k.
3. Use Newton's method to approximate $\sqrt{2}$.

Solution: The number $\sqrt{2}$ is a root of the equation $x^{2}-2=0$. Starting with a first approximation $x_{0}=1$ and setting $f(x)=x^{2}-2$, we have $f^{\prime}(x)=2 x$ and so our next approximation is

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=1-\frac{-1}{2}=1.5
$$

Then, the next approximation is $x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=1.5-\frac{0.25}{3} \approx 1.416666 \ldots$ The process can be continued to get closer and closer approximations.
4. If a sphere has volume 36π with a maximum possible error margin of π, what is the maximum possible error margin in the measure of the radius of the sphere?
Solution: We can use differentials to calculate the error. The volume of a sphere is given in terms of its radius by $V=\frac{4}{3} \pi r^{3}$, and so $d V=4 \pi r^{2} d r$. If the sphere has volume 36π, then $\frac{4}{3} \pi r^{3}$ is 36π, and so $r=3$. Thus $\pi=d V=$ $4 \pi \cdot 3^{2} d r$, and so $d r=\frac{1}{36}$.
5. Use implicit differentiation to find the slope of the tangent line to the curve $2^{y}+x y=x^{2}$ at the point $(2,1)$.
Solution: If we implicitly differentiate with respect to x, we get $2 y y^{\prime}+x y^{\prime}+$ $y=2 x$, and so at the point $(2,1)$ we have $4 y^{\prime}+y^{\prime}+2=2$. Thus $y^{\prime}=0$, so the tangent line at $(2,1)$ is horizontal.
6. Find the minimum possible distance from a point on the line $y=3-2 x$ to the origin.
Solution: The distance of a point (x, y) to the origin is $\sqrt{x^{2}+y^{2}}$, and to minimize this it suffices to minimize its square, $x^{2}+y^{2}$. Since $y=3-2 x$, we are minimizing

$$
x^{2}+(3-2 x)^{2}=x^{2}+9-12 x+4 x^{2}=5 x^{2}-12 x+9 .
$$

Setting the derivative equal to zero, we have $10 x=12$ and so $x=6 / 5$. Thus the distance to the origin is $\sqrt{(6 / 5)^{2}+(3-2 \cdot 6 / 5)^{2}=6 / 5 \sqrt{10}}$.
7. A Ferris wheel with a radius of 10 m is rotating at a rate of one revolution every 2 minutes. How fast is a rider rising when his seat is 16 m above ground level? Express your answer in meters per second.
Solution: Let θ be the angle that the rider's seat makes with the horizontal from the center of the ferris wheel. The height of the rider as a function of θ is $h(\theta)=10+10 \sin (\theta)$. Thinking of θ as a function of time t, since it makes one revolution every two minutes (120 seconds) we have that $\theta^{\prime}(t)=$ $2 \pi / 120=\pi / 60$ radians per second.
When he is 16 m above ground level we have that $10 \sin (\theta)=6$, and by the Pythagorean theorem, $10 \cos (\theta)=8$. So the rate of change of the rider's height is

$$
h^{\prime}=10 \cos (\theta) \theta^{\prime}
$$

which at that point is $8 \theta^{\prime}=8 \cdot \pi / 60=2 \pi / 15$ meters per second.
8. What is $\int e^{e^{x}} \cdot e^{x} d x$?

Solution: Using the u-substitution $u=e^{x}$, the integral becomes $\int e^{u} d u=$ e^{u}. Thus the most general form of the integral is $e^{e^{x}}+C$.
9. Find $\int_{0}^{10} \sqrt{100-x^{2}} d x$.

Solution: We can interpret this integral as the area under a semicircle of radius 10 centered at the origin in the first quadrant. This is a quarter of a circle of radius 10 , so the area is $1 / 4 \cdot 100 \pi=25 \pi$.
10. Suppose a certain donut can be modeled by revolving the circle of radius r centered at $(r, 0)$ about the y-axis. If a donut hole from the same company is a sphere with radius r, how much larger is the donut than the donut hole, by volume?
Solution: (Done in class.)

