Final Review Worksheet

Math 1A, section 103

May 4, 2014

0. (Warmup.) What is $\lim_{x\to 2} x^2 + 1$?

Solution: The function is continuous, so we can just plug in x = 2 to get an answer of 5.

1. Find $\lim_{x \to \infty} \frac{4x^2 + x + 1}{x^2 + 3x + 5}$.

Solution: Dividing top and bottom by x^2 , we see that all terms go to 0 except the leading terms, and so the limit is 4/1 = 4.

2. Find the derivative of $f(x) = \ln(1 - \sin(x))$. What is the domain of f?

Solution: The derivative is, by the chain rule, $\frac{1}{1-\sin(x)} \cdot (-\cos(x)) = \frac{\cos(x)}{\sin(x)-1}$. Since ln is defined on the positive real numbers, the domain consists of all points x for which $1 - \sin(x) > 0$, or $1 > \sin(x)$. This is true for all real numbers x except for those at which $\sin(x) = 1$, namely the numbers of the form $\frac{\pi}{2} + 2\pi k$ for integers k.

3. Use Newton's method to approximate $\sqrt{2}$.

Solution: The number $\sqrt{2}$ is a root of the equation $x^2-2 = 0$. Starting with a first approximation $x_0 = 1$ and setting $f(x) = x^2 - 2$, we have f'(x) = 2x and so our next approximation is

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 1 - \frac{-1}{2} = 1.5.$$

Then, the next approximation is $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 1.5 - \frac{0.25}{3} \approx 1.416666...$ The process can be continued to get closer and closer approximations. 4. If a sphere has volume 36π with a maximum possible error margin of π , what is the maximum possible error margin in the measure of the radius of the sphere?

Solution: We can use differentials to calculate the error. The volume of a sphere is given in terms of its radius by $V = \frac{4}{3}\pi r^3$, and so $dV = 4\pi r^2 dr$. If the sphere has volume 36π , then $\frac{4}{3}\pi r^3$ is 36π , and so r = 3. Thus $\pi = dV = 4\pi \cdot 3^2 dr$, and so $dr = \frac{1}{36}$.

5. Use implicit differentiation to find the slope of the tangent line to the curve $2^y + xy = x^2$ at the point (2, 1).

Solution: If we implicitly differentiate with respect to x, we get 2yy' + xy' + y = 2x, and so at the point (2, 1) we have 4y' + y' + 2 = 2. Thus y' = 0, so the tangent line at (2, 1) is horizontal.

6. Find the minimum possible distance from a point on the line y = 3 - 2x to the origin.

Solution: The distance of a point (x, y) to the origin is $\sqrt{x^2 + y^2}$, and to minimize this it suffices to minimize its square, $x^2 + y^2$. Since y = 3 - 2x, we are minimizing

$$x^{2} + (3 - 2x)^{2} = x^{2} + 9 - 12x + 4x^{2} = 5x^{2} - 12x + 9.$$

Setting the derivative equal to zero, we have 10x = 12 and so x = 6/5. Thus the distance to the origin is $\sqrt{(6/5)^2 + (3 - 2 \cdot 6/5)^2 = 6/5\sqrt{10}}$.

7. A Ferris wheel with a radius of 10 m is rotating at a rate of one revolution every 2 minutes. How fast is a rider rising when his seat is 16 m above ground level? Express your answer in meters per second.

Solution: Let θ be the angle that the rider's seat makes with the horizontal from the center of the ferris wheel. The height of the rider as a function of θ is $h(\theta) = 10 + 10\sin(\theta)$. Thinking of θ as a function of time t, since it makes one revolution every two minutes (120 seconds) we have that $\theta'(t) = 2\pi/120 = \pi/60$ radians per second.

When he is 16m above ground level we have that $10\sin(\theta) = 6$, and by the Pythagorean theorem, $10\cos(\theta) = 8$. So the rate of change of the rider's height is

$$h' = 10\cos(\theta)\theta'$$

which at that point is $8\theta' = 8 \cdot \pi/60 = 2\pi/15$ meters per second.

8. What is $\int e^{e^x} \cdot e^x dx$?

Solution: Using the *u*-substitution $u = e^x$, the integral becomes $\int e^u du = e^u$. Thus the most general form of the integral is $e^{e^x} + C$.

9. Find $\int_0^{10} \sqrt{100 - x^2} \, dx$.

Solution: We can interpret this integral as the area under a semicircle of radius 10 centered at the origin in the first quadrant. This is a quarter of a circle of radius 10, so the area is $1/4 \cdot 100\pi = 25\pi$.

10. Suppose a certain donut can be modeled by revolving the circle of radius r centered at (r, 0) about the y-axis. If a donut hole from the same company is a sphere with radius r, how much larger is the donut than the donut hole, by volume?

Solution: (Done in class.)