Estimation: Newton's method and areas

Math 1A, section 103

April 10, 2014
0. (Warmup.) Approximate $\sqrt{3}$ using Newton's method.

1. Try to compute $\ln (2)$ without a calculator. In other words, use Newton's method to approximate the solutions of the equation $e^{x}-2=0$.

Solution Outline: Start with $x_{0}=1$ as a first approximation. We can approximate e as 2.72 by using the formula $e=1 / 0!+1 / 1!+1 / 2!+\cdots$. The next approximation gives

$$
x_{1}=1-\frac{e-2}{e}=2 / e \approx \frac{2}{2.72} \approx 0.735
$$

Now, the next approximation is

$$
x_{2}=0.735-\frac{e^{2 / e}-2}{e^{2 / e}} \approx 0.735-1+2 / e^{0.735}
$$

To estimate this, let's approximate $0.735 \approx 3 / 4$, and calculate $e^{3 / 4}$ by Newton's method. It's the solution to $x^{4}-e^{3}=0$, and Newton's method shows the solution is approximately 2.125 . Substituting this in for $e^{0.735}$ in x_{2}, we find $x_{2} \approx 0.677$.
This is pretty close to $\ln (2)=0.69$!
2. Approximate π.

Solution Outline: Draw a half-circle of radius 1 centered at $(0,0)$. This is described by the function $f(x)=\sqrt{1-x^{2}}$ on $[-1,1]$. The area under this circle should be $\pi / 2$, and we can estimate it using rectangles! Using $-1,-0.9,-0.8, \ldots, 1$ as our endpoints of the rectangles, the lower estimate is about 1.45 and the upper is about 1.65. The average is 1.55 , and doubling this we find $\pi \approx 3.1$. Pretty close!
3. (Problem 24 in Stewart.)
(a) Find an expression for the area under the curve $y=x^{3}$ from 0 to 1 as a limit.
(b) Evaluate the limit in part (a). You may use the formula

$$
1^{3}+2^{3}+3^{2}+\cdots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

4. Using the definition of the definite integral in terms of limits of Riemann sums, prove that

$$
\int_{a}^{b} x d x=\frac{b^{2}-a^{2}}{2}
$$

5. Use the fundamental theorem of calculus to find

$$
\int_{-1}^{2} x^{3}-2 x d x
$$

