Derivatives Practice Worksheet

Math 1A, section 103

February 27, 2014

0 . (Warmup.) Find the slope of the tangent line at the point $(2,4)$ on the curve $y=x^{2}$.

1. Let $f(x)=x^{3}-2 x$.
(a) Draw the graph of $f(x)$. Where, precisely, does it cross the x-axis?
(b) Using your graph from part (a), sketch the graph of the derivative $f^{\prime}(x)$.
(c) Now take the derivative of f using derivative rules, and draw the resulting graph. Does it match your picture from part (b)?
2. Compute the derivative of the following functions with respect to x.
(a) $f(x)=\frac{\sin (x)}{1+\cos (x)}$
(b) $f(x)=\tan (x)^{2}$
(c) $f(x)=\frac{6 x^{3}+3 x-1}{x^{3}}$
(d) $f(x)=\frac{\sin (x)}{x}$
(e) $f(x)=\sin (x) \cos (y)$
3. Chain rule: The chain rule says that the derivative of the composition of two functions, $f(g(x))^{\prime}$, is equal to $g^{\prime}(x) \cdot f^{\prime}(g(x))$. Use the chain rule to compute the derivatives of the following functions:
(a) $f(x)=\sin (2 x)$
(b) $f(x)=\tan (x)^{2}$
(c) $f(x)=e^{3 x^{2}}$
(d) $f(x)=1 /(1+x)$
(e) $f(x)=\sin (\cos (x))$
4. Derive the "triple chain rule": what is the derivative of $f(g(h(x)))$?
5. An iPhone is thrown into the air, starting from a height of 1 meter off the ground, and with an initial velocity of 2 meters per second (written $2 \mathrm{~m} / \mathrm{s}$). Gravity slows it down by an acceleration of 9.8 meters per second squared ($9.8 \mathrm{~m} / \mathrm{s}^{2}$).
(a) What is the maximum height reached by the iPhone, and how long does it take the iPhone to reach that height? (Hint: The object's height as a function of time is given by $h(t)=h_{0}+v t-\frac{1}{2} a t^{2}$ where h_{0} is the initial height, v is the initial velocity, and a is the velocity.)
(b) If you don't catch the iPhone on the way down, how long does it take for it to smash against the ground?
