Derivatives Worksheet 1

Math 1A, section 103

February 20, 2014

0 . (Warmup.) If $f(x)=1$, what is $f^{\prime}(2)$?

1. Compute the derivatives of the following functions using the limit definition of derivative.
(a) $f(x)=2 x+3$
(b) $f(x)=x^{2}$
(c) $f(x)=x^{3}-x+1$
(d) $f(x)=\sqrt{1-x}$
(e) $f(x)=x^{3 / 2}$
(f) $f(x)=\frac{1}{x^{2}}$
(g) $f(x)=x+\frac{1}{x}$
2. Describe two ways in which a derivative can fail to exist.
3. Where is the function $f(x)=|x-6|$ not differentiable?
4. In problem 1 , you computed the derivative of $f(x)=x^{2}$. Check your answer by plotting the graph of $f(x)$ and estimating the slope of the tangent line at $x=1$.
5. Discrete derivatives: Suppose, instead of a function, we start with a sequence $a_{1}, a_{2}, a_{3}, \ldots$ of numbers. Then the discrete derivative of this sequence is defined to be the sequence

$$
a_{2}-a_{1}, a_{3}-a_{2}, a_{4}-a_{3}, \ldots
$$

consisting of the consecutive differences of entries. For example, the discrete derivative of $1,2,3,4,5, \ldots$ is the sequence $1,1,1,1, \ldots$.
(a) Find the discrete derivative of the sequence

$$
3,6,9,12,15, \ldots
$$

In general, what kinds of sequences have discrete derivatives which are constant sequences?
(b) Find the discrete derivative of the sequence

$$
1,4,9,16,25, \ldots
$$

consisting of the square numbers n^{2}. Can you find a formula for the nth term of this sequence? How does this relate to the derivative of $f(x)=x^{2}$?
(c) Find the discrete derivative of the sequence whose nth term is $n^{3}-n+1$. How many times do we have to take the derivative of such a sequence before getting a constant sequence?
(d) Find the discrete derivative of the sequence

$$
1,2,4,8,16, \ldots
$$

whose nth term is 2^{n}. What about 3^{n} ?
6. Consider the function f defined by

$$
f(x)= \begin{cases}0 & x \text { is irrational } \\ 1 & x \text { is rational }\end{cases}
$$

Is f differentiable at 0 ? How about $x \cdot f(x)$? How about $x^{2} \cdot f(x)$?

