Critical points and optimization

Math 1A, section 103

March 18, 2014

0 . (Warmup.) Find the minimum value of the function $f(x)=x^{2}$.

1. Find the values of x at which the following functions have a critical point.
(a) $f(x)=2 x^{3}-3 x^{2}-36 x$
(b) $g(t)=1+t^{2}+t^{3}+t^{4}$
(c) $f(x)=2 \cos (x)+\sin ^{2}(x)$
(d) $g(t)=|3 t-4|$
(e) $h(p)=\frac{p-1}{p^{2}+4}$
2. Find all local and absolute maxima and minima of the following functions on the given intervals. Where is the function increasing? Where is it decreasing?
(a) $f(x)=x^{3}-6 x^{2}+5,[-3,5]$
(b) $f(x)=\left(x^{2}-1\right)^{3},[-1,2]$
(c) $f(x)=x-\ln x,[1 / 2,2]$
(d) $f(t)=t \sqrt{4-t^{2}},[-1,2]$
3. Where is the function $f(x)=x^{3}+x$ concave up? Concave down?
4. Use the Mean Value theorem to show that $|\sin (a)-\sin (b)| \leq|a-b|$ for all a and b.
