
THE SIX OPERATIONS FOR SHEAVES ON ARTIN
STACKS I: FINITE COEFFICIENTS

YVES LASZLO AND MARTIN OLSSON

Abstract. In this paper we develop a theory of Grothendieck’s
six operations of lisse-étale constructible sheaves on Artin stacks
locally of finite type over certain excellent schemes of finite Krull
dimension. We also give generalizations of the classical base change
theorems and Kunneth formula to stacks, and prove new results
about cohomological descent for unbounded complexes.

1. Introduction

We denote by Λ a Gorenstein local ring of dimension 0 and char-
acteristic l. Let S be an affine excellent finite-dimensional scheme and
assume l is invertible on S. We assume that all S-schemes of finite type
X satisfy cdl(X) < ∞ (see 1.0.1 for more discussion of this). For an
algebraic stack X locally of finite type over S and ∗ ∈ {+,−, b,∅, [a, b]}
we write D∗

c(X ) for the full subcategory of the derived category D∗(X )
of complexes of Λ–modules on the lisse-étale site of X with constructible
cohomology sheaves. We will also consider the variant subcategories

D
(∗)
c (X ) ⊂ Dc(X ) consisting of complexes K such that for any quasi-

compact open U ⊂ X the restriction K|U is in D∗
c(U).

In this paper we develop a theory of Grothendieck’s six operations
of lisse-étale constructible sheaves on Artin stacks locally of finite type
over S1. In forthcoming papers, we will also develop a theory of adic
sheaves and perverse sheaves for Artin stacks. In addition to being
of basic foundational interest, we hope that the development of these
six operations for stacks will have a number of applications. Already
the work done in this paper (and the forthcoming ones) provides the
necessary tools needed in several papers on the geometric Langland’s
program (e.g. [21], [19], [7]). We hope that it will also shed further
light on the Lefschetz trace formula for stacks proven by Behrend [1],
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and also to versions of such a formula for stacks not necessarily of finite
type. We should also remark that recent work of Toen should provide
another approach to defining the six operations for stacks, and in fact
should generalize to a theory for n–stacks.

Let us describe more precisely the contents of this papers. For a
finite type morphism f : X → Y of stacks locally of finite type over S
we define functors

Rf∗ : D(+)
c (X )→ D(+)

c (Y), Rf! : D(−)
c (X )→ D(−)

c (Y),

Lf ∗ : Dc(Y)→ Dc(X ), Rf ! : Dc(Y)→ Dc(X ),

Rhom : D(−)
c (X )op ×D(+)

c (X )→ D(+)
c (X ),

and

(−)
L
⊗(−) : D(−)

c (X )×D(−)
c (X )→ D(−)

c (X )

satisfying all the usual adjointness properties that one has in the theory
for schemes2.

The main tool is to define f!, f
!, even for unbounded constructible

complexes, by duality. One of the key points is that, as observed by
Laumon, the dualizing complex is a local object of the derived category
and hence has to exist for stacks by glueing (see 2.3.3). Notice that this
formalism applies to non-separated schemes, giving a theory of coho-
mology with compact supports in this case. Previously, Laumon and
Moret-Bailly constructed the truncations of dualizing complexes for
Bernstein-Lunts stacks (see [20]). Our constructions reduces to theirs
in this case. Another approach using a dual version of cohomologi-
cal descent has been suggested by Gabber but seems to be technically
much more complicated.

Remark 1.0.1. The cohomological dimension hypothesis on schemes of
finite type over S is achieved for instance if S is the spectrum of a finite
field or of a separably closed field. In dimension 1, it will be achieved
for instance for the spectrum of a complete discrete valuation field with
residue field either finite or separably closed, or if S is a smooth curve
over C,Fq (cf. [13], exp. X and [26]). In these situations, cdl(X) is
bounded by a function of the dimension dim(X).

1.1. Conventions. In order to develop the theory over an excellent
base S as above, we use the recent finiteness results of Gabber [9]
and [10]. A complete account of these results will soon appear in a
writeup of the seminar on Gabber’s work [15]. However, the reader
uncomfortable with this theory may assume that S is an affine regular,
noetherian scheme of dimension ≤ 1.

2We will often write f∗, f !, f∗, f! for Lf∗,Rf !, Rf∗, Rf!.
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Our conventions about stacks are those of [20].
Let X be an algebraic stack locally of finite type over S and let

K ∈ D+
c (X ) be a complex of Λ–modules. Following [14], I.1.1, we say

that K has finite quasi-injective dimension if there exists an integer n
such that for any constructible sheaf of Λ-modules F we have

Exti(F,K) = 0, for i > n.

For K ∈ D
(+)
c (X ) we say that K has locally finite quasi-injective dimen-

sion if for every quasi-compact open substack U ↪→ X the restriction
K|U ∈ D+

c (U) has finite quasi-injective dimension.
In this paper we work systematically with unbounded complexes.

The theory of derived functors for unbounded complexes on topological
spaces is due to Spaltenstein [27], and for Grothendieck categories Serpé
[25]. An excellent reference for unbounded homological algebra is the
book of Kashiwara and Schapira [16].

Recall that for a ringed topos (T,OT) one has functors [16], theo-
rem 18.6.4,

(−)
L
⊗(−) : D(OT)×D(OT)→ D(OT)

and
Rhom(−,−) : D(OT)×D(OT)op → D(OT),

and for a morphism f : (T,OT) → (S,OS) of ringed topos one has
functors [16], theorem 18.6.9 and the line preceding this theorem,

Rf∗ : D(OT)→ D(OT)

and
Lf ∗ : D(OS)→ D(OT).

Moreover these satisfy the usual adjunction properties that one would
expect from the theory for the bounded derived category.

All the stacks we will consider will be locally of finite type over S.
As in [20], lemme 12.1.2, the lisse-étale topos Xlis-ét can be defined using
the site Lisse-Et(X ) whose objects are S-morphisms u : U→X where
U is an algebraic space which is separated and of finite type over S. The
topology is generated by the pretopology such that the covering families
are finite families (Ui, ui)→(U, u) such that

⊔
Ui→U is surjective and

étale (use the comparison theorem [13], III.4.1 remembering X is locally
of finite type over S). Notice that products over X are representable
in Lisse-Et(X ), simply because the diagonal morphism X →X ×SX is
representable and separated by definition [20].

If C is a complex of sheaves and d a locally constant valued function
C(d) is the Tate twist and C[d] the shifted complex. We denote C(d)[2d]
by C〈d〉. We fix once and for all a dualizing complex ΩS on S. In the



4 LASZLO and OLSSON

case when S is regular of dimension 0 or 1 we take ΩS = Λ〈 dim(S)〉 [4],
”Dualité”.

2. Homological algebra

2.1. Existence of K–injectives. Let (S,O) denote a ringed site, and
let C denote a full subcategory of the category of O–modules on S.
Let M be a complex of O–modules on S. By [27], 3.7, there exists a
morphism of complexes f : M→ I with the following properties:

(i) I = lim←− In where each In is a bounded below complex of flasque
O–modules.

(ii) The morphism f is induced by a compatible collection of quasi–
isomorphisms fn : τ≥−nM→ In.

(iii) For every n the map In → In−1 is surjective with kernel Kn a
bounded below complex of flasque O–modules.

(iv) For any pair of integers n and i the sequence

(2.1.i) 0→ Ki
n → Iin → Iin−1 → 0

is split.

Remark 2.1.1. In fact [27], 3.7, shows that we can choose In and Kn

to be complexes of injective O–modules (in which case (iv) follows from
(iii)). However, for technical reasons it is sometimes useful to know
that one can work just with flasque sheaves.

We make the following finiteness assumption, which is the analog
of [27], 3.12 (1).

Assumption 2.1.2. For any object U ∈ S there exists a covering
{Ui → U}i∈I and an integer n0 such that for any sheaf of O–modules
F ∈ C we have Hn(Ui,F) = 0 for all n ≥ n0.

Example 2.1.3. Let S = Lisse-Et(X ) be the lisse-étale site of an
algebraic S-stack locally of finite type X and O a constant local Goren-
stein ring of dimension 0 and characteristic invertible on S. Then
the class C of all O-sheaves, cartesian or not, satisfies the assump-
tion. Indeed, if U ∈ S is of finite type over S and F ∈ S, one has
Hn(U,F) = Hn(Uét,FU)3 which is zero for n bigger than a constant de-
pending only on U (and not on F). Therefore, one can take the trivial
covering in this case. We could also take O = OX and C to be the class
of quasi-coherent sheaves.

With hypothesis 2.1.2, one has the following criterion for f being
a quasi-isomorphism (cf. [27], 3.13).

3Cf. 3.3.1 below
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Proposition 2.1.4. Assume that Hj(M) ∈ C for all j. Then the map
f is a quasi–isomorphism. In particular, if each In is a complex of
injective O–modules then by [27], 2.5, f : M → I is a K–injective
resolution of M.

Proof: For a fixed integer j, the map Hj(M) → Hj(In) is an
isomorphism for n sufficiently big. Since this isomorphism factors as

(2.1.ii) Hj(M)→ Hj(I)→ Hj(In)

it follows that the map Hj(M)→ Hj(I) is injective.
To see that Hj(M) → Hj(I) is surjective, let U ∈ S be an object

and γ ∈ Γ(U, Ij) an element with dγ = 0 defining a class in Hj(I)(U).
Since I = lim←− In the class γ is given by a compatible collection of sections

γn ∈ Γ(U, Ijn) with dγn = 0.
Let (U = {Ui→U}, n0) be the data provided by 2.1.2. Let N be

an integer greater than n0 − j. For m ≥ N and Ui ∈ U the sequence

(2.1.iii) Γ(Ui,K
j−1
m )→ Γ(Ui,K

j
m)→ Γ(Ui,K

j+1
m )→ Γ(Ui,K

j+2
m )

is exact. Indeed Km is a bounded below complex of flasque sheaves
quasi-isomorphic to H−m(M)[m], and therefore the exactness is equiv-
alent to the statement that the groups

Hj(Ui,H−m(M)[m]) = Hj+m(Ui,H−m(M))

and
Hj+1(Ui,H−m(M)[m]) = Hj+m+1(Ui,H−m(M))

are zero. This follows from the assumptions and the observation that

j+m ≥ j+N > j+n0−j = n0, j+1+m ≥ j+1+N ≥ j+n0−j = n0.

Since the maps Γ(Ui, I
r
m) → Γ(Ui, I

r
m−1) are also surjective for all

m and r, it follows from [27], 0.11, applied to the system

(2.1.iv) Γ(Ui, I
j−1
m )→ Γ(Ui, I

i
m)→ Γ(Ui, I

j+1
m )→ Γ(Ui, I

j+2
m )

that the map

(2.1.v) Hj(Γ(Ui, I))→ Hj(Γ(Ui, Im))

is an isomorphism.
Then since the map Hj(M)→ Hj(Im) is an isomorphism it follows

that for every i the restriction of γ to Ui is in the image of Hj(M)(Ui).
�

Next consider a fibred topos T →D with corresponding total topos
T• [13], VI.7. We call T• a D-simplicial topos. Concretely, this means
that for each i ∈ D the fiber Ti is a topos and that any δ ∈ HomD(i, j)
comes together with a morphism of topos δ : Ti→Tj such that δ−1 is
the inverse image functor of the fibred structure. The objects of the
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total topos are simply collections (Fi ∈ Ti)i∈D together with functorial
transition morphisms δ−1Fj→Fi for any δ ∈ HomD(i, j). We assume
furthermore that T• is ringed by a O• and that for any δ ∈ HomD(i, j),
the morphism δ : (Ti,Oi)→(Tj,Oj) is flat.

Example 2.1.5. Let ∆+ be the category whose objects are the ordered
sets [n] = {0, . . . , n} (n ∈ N) and whose morphisms are injective order-
preserving maps. Let D be the opposite category of ∆+. In this case
T. is called a strict simplicial topos. For instance, if U→X is a pre-
sentation, the simplicial algebraic space U• = cosq0(U/X ) defines a
strict simplicial topos U•lis-ét whose fiber over [n] is Unlis-ét. For a mor-
phism δ : [n]→ [m] in ∆+ the morphism δ : Tm→Tn is induced by the
(smooth) projection Um→Un defined by δ ∈ Hom∆+opp([m], [n]).

Example 2.1.6. Let N be the natural numbers viewed as a category
in which Hom(n,m) is empty unless m ≥ n in which case it consists
of a unique element. For a topos T we can then define an N-simplicial
topos TN. The fiber over n of TN is T and the transition morphisms
by the identity of T. The topos TN is the category of projective systems
in T. If O• is a constant projective system of rings then the flatness
assumption is also satisfied, or more generally if δ−1On → Om is an
isomorphism for any morphism δ : m → n in N then the flatness
assumption holds.

Let C• be a full subcategory of the category of O•–modules on a
ringed D-simplicial topos (T•,O•). For i ∈ D, let ei : Tn→T• the
morphism of topos defined by e−1

i F• = Fn (cf. [13], Vbis, 1.2.11).
Recall that the family e−1

i , i ∈ D is conservative. Let Ci denote the
essential image of C• under e−1

i (which coincides with e∗i on Mod(T•,O•)
because e−1

i O• = Oi).

Assumption 2.1.7. For every i ∈ D the ringed topos (Ti,Oi) is iso-
morphic to the topos of a ringed site satisfying 2.1.2 with respect to
Ci.

Example 2.1.8. Let T• be the topos (Xlis-ét)
N of a S-stack locally of

finite type. Then, the full subcategory C• of Mod(T•,O•) whose objects
are families Fi of cartesian modules satisfies the hypothesis.

Let M be a complex of O•–modules on T•. Again by [27], 3.7,
there exists a morphism of complexes f : M → I with the following
properties:

(S i) I = lim←− In where each In is a bounded below complex of injective
modules.
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(S ii) The morphism f is induced by a compatible collection of quasi–
isomorphisms fn : τ≥−nM→ In.

(S iii) For every n the map In → In−1 is surjective with kernel Kn a
bounded below complex of injective O–modules.

(S iv) For any pair of integers n and i the sequence

(2.1.vi) 0→ Ki
n → Iin → Iin−1 → 0

is split.

Proposition 2.1.9. Assume that Hj(M) ∈ C• for all j. Then the
morphism f is a quasi–isomorphism and f : M → I is a K–injective
resolution of M.

Proof: By [27], 2.5, it suffices to show that f is a quasi–isomorphism.
For this in turn it suffices to show that for every i ∈ D the restriction
e∗i f : e∗iM → e∗i I is a quasi–isomorphism of complexes of Oi-modules
since the family e∗i = e−1

i is conservative. But e∗i : Mod(T•,O•)→Mod(Ti,Oi)
has a left adjoint ei! defined by

[ei!(F)]j = ⊕δ∈HomD(j,i)δ
∗F

with the obvious transition morphisms. It is exact by the flatness of
the morphisms δ. It follows that e∗i takes injectives to injectives and
commutes with direct limits. We can therefore apply 2.1.4 to e∗iM→ e∗i I
to deduce that this map is a quasi–isomorphism. �

In what follows we call a K–injective resolution f : M→ I obtained
from data (i)-(iv) as above a Spaltenstein resolution.

The main technical lemma is the following.

Lemma 2.1.10. Let ε : (T•,O•) → (S,Ψ) be a morphism of ringed
topos, and let C be a complex of O•–modules. Assume that

(1) Hn(C) ∈ C• for all n.
(2) There exists i0 such that Riε∗Hn(C) = 0 for any n and any

i > i0.

Then, if j ≥ −n+ i0, we have Rjε∗C = Rjε∗τ≥−nC.

Proof: By 2.1.9 and assumption (1), there exists a Spaltenstein
resolution f : C → I of C. Let Jn := ε∗In and Fn := ε∗Kn. Since the
sequences 2.1.vi are split, the sequences

(2.1.vii) 0→ Fn → Jn → Jn−1 → 0

are exact.
The exact sequence 2.1.vi and property (S ii) defines a distinguished

triangle
Kn → τ≥−nC→ τ≥−n+1C
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showing that Kn is quasi–isomorphic to H−n(C)[n]. Because Kn is a
bounded below complex of injectives, one gets

Rε∗H−n(C)[n] = ε∗Kn

and accordingly

Rj+nε∗H−n(C) = Hj(ε∗Kn) = Hj(Fn).

By assumption (2), we have therefore

Hj(Fn) = 0 for j > −n+ i0.

By [27], 0.11, this implies that

Hj(lim←− Jn)→ Hj(Jn)

is an isomorphism for j ≥ −n + i0. But, by adjunction, ε∗ commutes
with projective limit. In particular, one has

lim←− Jn = ε∗I,

and by (S i) and (S ii)

Rε∗C = ε∗I and Rε∗τ≥−nC = ε∗Jn.

Thus for any n such that j ≥ −n+ i0 one has

(2.1.viii) Rjε∗C = Hj(ε∗I) = Hj(Jn) = Rjε∗τ≥−nC.

�

Remark 2.1.11. An important special case of lemma 2.1.10 is the fol-
lowing. Take D to be the category with one element and one morphism
so that ε : (T ,O) → (S,Ψ) is just a morphism of ringed topos. Let
C be a full subcategory of the category of O-modules such that (T ,O)
is isomorphic to the ringed topos associated to a ringed site satisfying
assumption 2.1.2 with respect to C. Let C be a complex of O-modules
such that

(1) Hn(C) ∈ C for all n.
(2) There exists an integer i0 such that Riε∗Hn(C) = 0 for any n

and i > i0.

Then by lemma 2.1.10 the natural map Rjε∗C → Rjε∗τ≥−nC is an
isomorphism for j ≥ −n+ i0.
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2.2. The descent theorem. Let (T•,O•) be a simplicial or strictly
simplicial 4 ringed topos (D = ∆opp or D = ∆+opp), let (S,Ψ) be
another ringed topos, and let ε : (T•,O•)→ (S,Ψ) be an augmentation.
Assume that ε is a flat morphism (i.e. for every i ∈ D, the morphism
of ringed topos (Ti,Oi)→ (S,Ψ) is a flat morphism), and furthermore
that for every morphism δ : i→ j in D the corresponding morphism of
ringed topos (Ti,Oi)→ (Tj,Oj) is flat.

Let C be a full subcategory of the category of Ψ–modules, and as-
sume that C is closed under kernels, cokernels and extensions (one says
that C is a Serre subcategory). Let D(S) denote the derived category
of Ψ–modules, and let DC(S) ⊂ D(S) be the full subcategory consisting
of complexes whose cohomology sheaves are in C. Let C• denote the
essential image of C under the functor ε∗ : Mod(Ψ)→ Mod(O•).

We assume the following condition holds:

Assumption 2.2.1. Assumption 2.1.7 holds (with respect to C•), and
ε∗ : C→C• is an equivalence of categories with quasi-inverse Rε∗.

Lemma 2.2.2. The full subcategory C• ⊂ Mod(O•) is closed under
extensions, kernels and cokernels.

Proof: Consider an extension of sheaves of O•–modules

(2.2.i) 0 −−−→ ε∗F1 −−−→ E −−−→ ε∗F2 −−−→ 0,

where F1,F2 ∈ C. Since R1ε∗ε
∗F1 = 0 and the maps Fi → R0ε∗ε

∗Fi
are isomorphisms, we obtain by applying ε∗ε∗ a commutative diagram
with exact rows

(2.2.ii)

0 −−−→ ε∗F1 −−−→ ε∗ε∗E −−−→ ε∗F2 −−−→ 0

id

y α

y yid

0 −−−→ ε∗F1 −−−→ E −−−→ ε∗F2 −−−→ 0.

It follows that α is an isomorphism. Furthermore, since C is closed
under extensions we have ε∗E ∈ C. Let f ∈ Hom(ε∗F1, ε

∗F2). There
exists a unique ϕ ∈ Hom(F1,F2) such that f = ε∗ϕ. Because ε∗ is
exact, it maps the kernel and cokernel of ϕ, which are objects of C,
to the kernel and cokernel of f respectively. Therefore, the latter are
objects of C•. �

Let D(T•) denote the derived category of O•–modules, and let
DC•(T•) ⊂ D(T•) denote the full subcategory of complexes whose coho-
mology sheaves are in C•.

4One could replace simplicial by multisimplicial
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Since ε is a flat morphism, we obtain a morphism of triangulated
categories (the fact that these categories are triangulated comes pre-
cisely from the fact that both C and C• are Serre categories [11]).

(2.2.iii) ε∗ : DC(S)→ DC•(T•).

Theorem 2.2.3. The functor ε∗ of 2.2.iii is an equivalence of trian-
gulated categories with quasi–inverse given by Rε∗.

Proof: Note first that if M• ∈ DC•(T•), then by lemma 2.1.10,
for any integer j there exists n0 such that Rjε∗M• = Rjε∗τ≥n0M•. In
particular, we get by induction Rjε∗M• ∈ C. Thus Rε∗ defines a functor

(2.2.iv) Rε∗ : DC•(T•)→ DC(S).

To prove 2.2.3 it suffices to show that for M• ∈ DC•(T•) and F ∈ DC(S)
the adjunction maps

(2.2.v) ε∗Rε∗M• → M•, F→ Rε∗ε
∗F.

are isomorphisms. For this note that for any integers j and n there are
commutative diagrams

(2.2.vi)

ε∗Rjε∗M• −−−→ Hj(M•)y y
ε∗Rjε∗τ≥nM• −−−→ Hj(τ≥nM•),

and

(2.2.vii)

Hj(F) −−−→ Rjε∗ε
∗Fy y

Hj(τ≥nF) −−−→ Rjε∗ε
∗τ≥nF.

By the observation at the begining of the proof, there exists an integer
n so that the vertical arrows in the above diagrams are isomorphisms.
This reduces the proof 2.2.3 to the case of a bounded below complex.
In this case one reduces by devissage to the case when M• ∈ C• and
F ∈ C in which case the result holds by assumption. �

The theorem applies in particular to the following examples.

Example 2.2.4. Let S be an algebraic space and X• → S a flat hyper-
cover by algebraic spaces. Let X+

• → S denote the associated strictly
simplicial space with S-augmentation. We then obtain an augmented
strictly simplicial topos ε : (X+

•,ét,OX+
•,ét

) → (Sét,Oét). Note that this

augmentation is flat. Let C denote the category of quasi–coherent sheaves
on Sét. Then the category C• is the category of cartesian sheaves of
OX+

•,ét
–modules whose restriction to each Xn is quasi–coherent. Let
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Dqcoh(X
+
• ) denote the full subcategory of the derived category of OX+

• ,ét
–

modules whose cohomology sheaves are quasi–coherent, and let Dqcoh(S)
denote the full subcategory of the derived category of OSét

–modules
whose cohomology sheaves are quasi–coherent. Theorem 2.2.3 then
shows that the pullback functor

(2.2.viii) ε∗ : Dqcoh(S)→ Dqcoh(X
+
• )

is an equivalence of triangulated categories with quasi–inverse Rε∗.

Example 2.2.5. Let X be an algebraic stack and let U• → X be
a smooth hypercover by algebraic spaces. Let D(X ) denote the de-
rived category of sheaves of OXlis-ét

–modules in the topos Xlis-ét, and
let Dqcoh(X ) ⊂ D(X ) be the full subcategory of complexes with quasi–
coherent cohomology sheaves.

Let U+
• denote the strictly simplicial algebraic space obtained from

U• by forgetting the degeneracies. Since the Lisse-Étale topos is func-
torial with respect to smooth morphisms, we therefore obtain a strictly
simplicial topos U+

•lis-ét and a flat morphism of ringed topos

ε : (U+
•lis-ét,OU+

•lis-ét
)→ (Xlis-ét,OXlis-ét

).

Then 2.2.1 holds with C equal to the category of quasi–coherent sheaves
on X . The category C• in this case is the category of cartesian OU+

•lis-ét
–

modules M• such that the restriction Mn is a quasi–coherent sheaf on
Un for all n. By 2.2.3 we then obtain an equivalence of triangulated
categories

(2.2.ix) Dqcoh(X )→ Dqcoh(U
+
•,lis-ét),

where the right side denotes the full subcategory of the derived category
of OU+

•lis-ét
–modules with cohomology sheaves in C•.

On the other hand, there is also a natural morphism of ringed topos

π : (U+
•lis-ét,OU+

•lis-ét
)→ (U+

•ét,OU+
•ét

)

with π∗ and π∗ both exact functors. Let Dqcoh(U
+
•ét) denote the full sub-

category of the derived category of OU+
•ét

–modules consisting of com-

plexes whose cohomology sheaves are quasi–coherent (i.e. cartesian
and restrict to a quasi–coherent sheaf on each Unét). Then π induces
an equivalence of triangulated categories Dqcoh(U

+
•ét) ' Dqcoh(U

+
•lis-ét).

Putting it all together we obtain an equivalence of triangulated cate-
gories Dqcoh(Xlis-ét) ' Dqcoh(U

+
•ét).

Example 2.2.6. Let X be an algebraic stack locally of finite type over
S and O be a constant local Gorenstein ring of dimension 0 and of
characteristic invertible on S. Let U• → X be a smooth hypercover
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by algebraic spaces, and T• the localized topos Xlis-ét|U•. Take C to be
the category of constructible sheaves of O–modules. Then 2.2.3 gives
an equivalence Dc(Xlis-ét) ' Dc(T•,Λ). On the other hand, there is a
natural morphism of topos λ : T• → U•,ét and one sees immediately
that λ∗ and λ∗ induce an equivalence of derived categories Dc(T•,Λ) '
Dc(U•,ét,Λ). It follows that Dc(Xlis-ét) ' Dc(U•,ét).

2.3. The BBD gluing lemma. The purpose of this section is to ex-
plain how to modify the proof of the gluing lemma [2], 3.2.4, for un-
bounded complexes.

Let ∆̃ denote the strictly simplicial category of finite ordered sets

with injective order preserving maps, and let ∆+ ⊂ ∆̃ denote the full

subcategory of nonempty finite ordered sets. For a morphism α in ∆̃
we write s(α) (resp. b(α)) for its source (resp. target).

Let T be a topos and U· → e a strictly simplicial hypercovering of

the initial object e ∈ T. For [n] ∈ ∆̃ write Un for the localized topos
T|Un where by definition we set U∅ = T. Then we obtain a strictly
simplicial topos U· with an augmentation π : U· → T.

Let Λ be a sheaf of rings in T and write also Λ for the induced
sheaf of rings in U· so that π is a morphism of ringed topos.

Let C· denote a full substack of the fibered and cofibered category

over ∆̃

[n] 7→ (category of sheaves of Λ–modules in Un)

such that each Cn is a Serre subcategory of the category of Λ–modules
in Un. For any [n] we can then form the derived category DC(Un,Λ)
of complexes of Λ–modules whose cohomology sheaves are in Cn. The

categories DC(Un,Λ) form a fibered and cofibered category over ∆̃.
We make the following assumptions on C:

Assumption 2.3.1. (i) For any [n] the topos Un is equivalent to the
topos associated to a site Sn such that for any object V ∈ Sn there
exists an integer n0 and a covering {Vj → V} in Sn such that for any
F ∈ Cn we have Hn(Vj,F) = 0 for all n ≥ n0.

(ii) The natural functor

C∅ → (cartesian sections of C|∆+ over ∆+)

is an equivalence of categories.
(iii) The category D(T,Λ) is compactly generated.

Remark 2.3.2. The case we have in mind is when T is the lisse-étale
topos of an algebraic stack X locally of finite type over an affine regu-
lar, noetherian scheme of dimension ≤ 1, U· is given by a hypercover-
ing of X by schemes, Λ is a Gorenstein local ring of dimension 0 and
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characteristic l invertible on X , and C is the category of constructible
Λ–modules. In this case the category Dc(Xlis-et,Λ) is compactly gener-
ated. Indeed a set of generators is given by sheaves j!Λ[i] for i ∈ Z and
j : U→ X an object of the lisse-étale site of X .

There is also a natural functor

(2.3.i) DC(T,Λ)→ (cartesian sections of [n] 7→ DC(Un,Λ) over ∆+).

Theorem 2.3.3. Let [n] 7→ Kn ∈ DC(Un,Λ) be a cartesian section of
[n] 7→ DC(Un,Λ) over ∆+ such that Exti(K0,K0) = 0 for all i < 0.
Then (Kn) is induced by a unique object K ∈ DC(T,Λ) via the functor
2.3.i.

The uniqueness is the easy part:

Lemma 2.3.4. Let K,L ∈ D(T,Λ) and assume that Exti(K,L) = 0
for i < 0. Then U 7→ HomD(U,Λ)(K|U,L|U) is a sheaf.

Proof: Let H denote the complex Rhom(K,L). By assump-
tion the natural map H → τ≥0H is an isomorphism. It follows that
HomD(U,Λ)(K|U,L|U) is equal to the value of H0(H) on U which implies
the lemma. �

The existence part is more delicate. Let A denote the fibered and

cofibered category over ∆̃ whose fiber over [n] ∈ ∆̃ is the category
of Λ–modules in Un. For a morphism α : [n] → [m], F ∈ A(n) and
G ∈ A(m) we have

Homα(F,G) = HomA(m)(α
∗F,G) = HomA(n)(F, α∗G).

We write A+ for the restriction of A to ∆+.
Define a new category tot(A+) as follows:

• The objects of tot(A+) are collections of objects (An)n≥0 with
An ∈ A(n).
• For two objects (An) and (Bn) we define

Homtot(A+)((A
n), (Bn)) :=

∏
α

Homα(A
s(α),Bb(α)),

where the product is taken over all morphisms in ∆+.
• If f = (fα) ∈ Hom((An), (Bn)) and g = (gα) ∈ Hom((Bn), (Cn))

are two morphisms then the composite is defined to be the
collection of morphisms whose α component is defined to be

(g ◦ f)α :=
∑
α=βγ

gβfγ

where the sum is taken over all factorizations of α (note that
this sum is finite).
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The category tot(A+) is an additive category.
Let (K, d) be a complex in tot(A+) so for every degree n we are

given a family of objects (Kn)m ∈ A(m). Set

Kn,m := (Kn+m)n.

For α : [n]→ [m] in ∆+ let d(α) denote the α–component of d so

d(α) ∈ Homα((K
p)n, (Kp+1)m) = Homα(K

n,p−n,Km,p+1−m)

or equivalently d(α) is a map Kn,p → Km,p+n−m+1. In particular,
d(id[n]) defines a map Kn,m → Kn,m+1 and as explained in [2], 3.2.8,
this map makes Kn,∗ a complex. Furthermore for any α the map d(α)
defines an α–map of complexes Kn,∗ → Km,∗ of degree n−m+ 1. The
collection of complexes Kn,∗ can also be defined as follows. For an inte-
ger p let LpK denote the subcomplex with (LpK)n,m equal to 0 if n < p
and Kn,m otherwise. Note that for any α : [n] → [m] which is not the
identity map [n]→ [n] the image of d(α) is contained in Lp+1K. Taking
the associated graded of L we see that

grnLK[n] = (Kn,∗, d′′)

where d′′ denote the differential (−1)nd(id[n]). Note that the functor
(K, d) 7→ Kn,∗ commutes with the formation of cones and with shifting
of degrees.

As explained in [2], 3.2.8, a complex in tot(A+) is completely char-
acterized by the data of a complex Kn,∗ ∈ C(A+) for every [n] ∈ ∆+ and
for every morphism α : [n] → [m] an α–morphism d(α) : Kn,∗ → Km,∗

of degree n − m + 1, such that d(id[n]) is equal to (−1)n times the
differential of Kn,∗ and such that for every α we have∑

α=βγ

d(β)d(γ) = 0.

Via this dictionary, a morphism f : K → L in C(tot(A+)) is given by
an α–map f(α) : Kn,∗ → Km,∗ of degree n − m for every morphism
α : [n]→ [m] in ∆+ such that for any morphism α we have∑

α=βγ

d(β)f(γ) =
∑
α=βγ

f(β)d(γ).

Let K(tot(A+)) denote the category whose objects are complexes
in tot(A+) and whose morphisms are homotopy classes of morphisms
of complexes. The category K(tot(A+)) is a triangulated category. Let
L ⊂ K(tot(A+)) denote the full subcategory of objects K for which
each Kn,∗ is acyclic for all n. The category L is a localizing subcate-
gory of K(tot(A+)) in the sense of [3], 1.3, and hence the localized cat-
egory D(tot(A+)) exists. The category D(tot(A+)) is obtained from
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K(tot(A+)) by inverting quasi–isomorphisms. Recall that an object
K ∈ K(tot(A+)) is called L–local if for any object X ∈ L we have
HomK(tot(A+))(X,K) = 0. Note that the functor K 7→ Kn,∗ descends to
a functor

D(tot(A+))→ D(Un,Λ).

We define D+(tot(A+)) ⊂ D(tot(A+)) to be the full subcategory of
objects K for which there exists an integer N such that Hj(Kn,∗) = 0
for all n and all j ≤ N.

Recall [3], 4.3, that a localization for an object K ∈ K(tot(A+)) is
a morphism K → I with I an L–local object such that for any L–local
object Z the natural map

(2.3.ii) HomK(tot(A+))(I,Z)→ HomK(tot(A+))(K,Z)

is an isomorphism.

Lemma 2.3.5. A morphism K→ I is a localization if I is L–local and
for every n the map Kn,∗ → In,∗ is a quasi–isomorphism.

Proof: By [3], 2.9, the morphism 2.3.ii can be identified with the
natural map

(2.3.iii) HomD(tot(A+))(I,Z)→ HomD(tot(A+))(K,Z),

which is an isomorphism if K→ I induces an isomorphism in D(tot(A+)).
�

Proposition 2.3.6. Let K ∈ C(tot(A+)) be an object with each Kn,∗

homotopically injective. Then K is L–local.

Proof: Let X ∈ L be an object. We have to show that any mor-
phism f : X→ K in C(tot(A+)) is homotopic to zero. Such a homotopy
h is given by a collection of maps h(α) such that

f(α) = −
∑
α=βγ

d(β)h(γ) + h(β)d(γ).

We usually write just h for h(id[n]).
We construct these maps h(α) by induction on b(α) − s(α). For

s(α) = b(α) we choose the h(α) to be any homotopies between the
maps f(id[n]) and the zero maps.

For the inductive step, it suffices to show that

Ψ(α) = f(α) + d(α)h+ hd(α) +
∑
α=βγ

′d(β)h(γ) + h(β)d(γ)

commutes with the differentials d, where Σ′
α=βγ denotes the sum over

all possible factorizations with β and γ not equal to the identity maps.



16 LASZLO and OLSSON

For then Ψ(α) is homotopic to zero and we can take h(α) to be a
homotopy between Ψ(α) and 0.

Define

A(α) =
∑
α=βγ

′d(β)h(γ) + h(γ)d(β)

and

B(α) = d(α)h+ hd(α) + A(α).

Lemma 2.3.7. One has the identity∑
α=βγ

′A(β)d(γ)− d(β)A(γ) =
∑
α=βγ

′h(β)S(γ)− S(β)h(γ),

where S(α) denotes
∑

α=βγ
′d(β)d(γ).

Proof:∑
α=βγ

′A(β)d(γ)− d(β)A(γ) =
∑
α=εργ

′d(ε)h(ρ)d(γ) + h(ε)d(ρ)d(γ)− d(ε)h(ρ)d(γ)− d(ε)d(ρ)h(γ)

=
∑
α=βγ

′h(β)S(γ)− S(β)h(γ),

where Σ′
α=εργ denotes the sum over all possible factorizations with ε, ρ,

and γ not equal to the identity maps. �

Lemma 2.3.8. One has the identity∑
α=βγ

′B(β)d(γ)−d(β)B(γ) = −h(d(α)d+dd(α))+(d(α)d+dd(α))h+
∑
α=βγ

′h(β)S(γ)−S(β)h(γ).

Proof:∑
α=βγ

′B(β)d(γ)− d(β)B(γ)

=
∑
α=βγ

′d(β)hd(γ) + hd(β)d(γ) + A(β)d(γ)− d(β)d(γ)h− d(β)hd(γ)− d(β)A(γ)

= −h(d(α)d+ dd(α)) + (d(α)d+ dd(α))h+
∑
α=βγ

′h(β)S(γ)− S(β)h(γ).

�
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We can now prove 2.3.6. We compute

dA(α)− A(α)d

=
∑
α=βγ

′dd(β)h(γ) + dh(β)d(γ)− d(β)h(γ)d− h(β)d(γ)d

=
∑
α=βγ

′dd(β)h(γ) + (−f(β)− B(β)− h(β)d)d(γ)− d(β)(−f(γ)− B(γ)− dh(γ))− h(β)d(γ)d

=
∑
α=βγ

′dd(β)h(γ)− f(β)d(γ)− B(β)d(γ)

− h(β)dd(γ) + d(β)f(γ) + d(β)B(γ) + d(β)dh(γ)− h(β)d(γ)d

= [
∑
α=βγ

′(−S(β)h(γ)) + h(β)S(γ)− f(β)d(γ) + d(β)f(γ)]

+ h(d(α)d+ dd(α))− (d(α)d+ dd(α))h−
∑
α=βγ

′h(β)S(γ)− S(β)h(γ)

= f(α)d− df(α) + fd(α)− d(α)f + h(d(α)d+ dd(α))− (d(α)d+ dd(α))h.

So finally

dΨ(α)−Ψ(α)d

= df(α) + dd(α)h+ dhd(α) + dA(α)− f(α)d− d(α)hd− hd(α)d− A(α)d

= df(α) + dd(α)h+ dhd(α)− f(α)d− d(α)hd− hd(α)d

+ f(α)d− df(α) + fd(α)− d(α)f + hd(α)d+ hdd(α)− d(α)dh− dd(α)h

= 0.

This completes the proof of 2.3.6. �
Let

ε∗ : C(A(∅))→ C(tot(A+))

be the functor sending a complex K to the object of C(tot(A+)) with
ε∗Kn,∗ = K|Un with maps d(id[n]) equal to (−1)n times the differential,
for ∂i : [n]→ [n+ 1] the map d(∂i) is the canonical map of complexes,
and all other d(α)’s are zero. The functor ε∗ takes quasi–isomorphisms
to quasi–isomorphisms and hence induces a functor

ε∗ : D(A(∅))→ D(tot(A+)).

Lemma 2.3.9. The functor ε∗ has a right adjoint Rε∗ : D(tot(A+))→
D(A(∅)) and Rε∗ is a triangulated functor.

Proof: We apply the adjoint functor theorem [22], 4.1. By our
assumptions the category D(A(∅)) is compactly generated. Therefore
it suffices to show that ε∗ commutes with coproducts (direct sums)
which is immediate. �
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More concretely, the functor Rε∗ can be computed as follows. If K
is L–local and there exists an integer N such that for every n we have
Kn,m = 0 for m < N, then Rε∗K is represented by the complex with

(ε∗K)p = ⊕n+m=pεn∗K
n,m

with differential given by
∑
d(α). This follows from Yoneda’s lemma

and the observation that for any F ∈ D(A(∅)) we have

HomD(A(∅))(F,Rε∗K) = HomD(tot(A+))(ε
∗F,K)

= HomK(tot(A+))(ε
∗F,K) since K is L-local

= HomK(A(∅))(F, ε∗K) by [2], 3.2.12.

Lemma 2.3.10. For any F ∈ D+(A(∅)) the natural map F→ Rε∗ε
∗F

is an isomorphism.

Proof: Represent F by a complex of injectives. Then ε∗F is L–local
by 2.3.6. The result then follows from cohomological descent. �

Let D+
cart(tot(A+) ⊂ D+(tot(A+)) denote the full subcategory of

objects K such that for every n and inclusion ∂i : [n] ↪→ [n + 1] the
map of complexes

Kn,∗|Un+1 → Kn+1,∗

is a quasi-isomorphism.

Proposition 2.3.11. Let K ∈ D+
cart(tot(A+)) be an object. Then

ε∗Rε∗K → K is an isomorphism. In particular, Rε∗ and ε∗ induce
an equivalence of categories between D+

cart(tot(A+)) and D+(A(∅)).

Proof: For any integer s and system (Kn,∗, d(α)) defining an object
of C(tot(A+)) we obtain a new object by (τ≤sK

n,∗, d(α)) since for any
α which is not the identity morphism the map d(α) has degree ≤ 0.
We therefore obtain a functor τ≤s : C(tot(A+)) → C(tot(A+)) which
takes quasi–isomorphisms to quasi–isomorphisms and hence descends
to a functor

τ≤s : D(tot(A+))→ D(tot(A+)).

Furthermore, there is a natural morphism of functors τ≤s → τ≤s+1 and
we have

K ' hocolim τ≤sK.

Note that the functor ε∗ commutes with homotopy colimits since it
commutes with direct sums. If we show the proposition for the τ≤sK
then we see that the natural map

ε∗(hocolimRε∗τ≤sK) ' hocolimε∗Rε∗τ≤sK→ hocolimτ≤sK ' K
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is an isomorphism. In particular K is in the essential image of ε∗.
Write K = ε∗F. Then by 2.3.10 Rε∗K ' F whence ε∗Rε∗K → K is an
isomorphism.

It therefore suffices to prove the proposition for K bounded above.
Considering the distinguished triangles associated to the truncations
τ≤sK we further reduce to the case when K is concentrated in just a
single degree. In this case, K is obtained by pullback from an object of
A(∅) and the proposition again follows from 2.3.10. �

For an object K ∈ K(tot(A+)), we define τ≥sK to be the cone of
the natural map τ≤s−1K→ K.

Observe that the category K(tot(A+)) has products and therefore
also homotopy limits. Let K ∈ KC(tot(A+)) be an object. By 2.3.11,
for each s we can find a bounded below complex of injectives Is ∈
C(A(∅)) and a quasi–isomorphism σs : τ≥sK → ε∗Is. Since ε∗Is is
L–local and ε∗ : D+(A(∅)) → D(tot(A+)) is fully faithful by 2.3.11,
the maps τ≥s−1K → τ≥sK induce a unique morphism ts : Is−1 → Is in
K(A(∅)) such that the diagrams

τ≥s−1K −−−→ τ≥sK

σs−1

y yσs

ε∗Is−1
ts−−−→ ε∗Is

commutes in K(tot(A+)).

Proposition 2.3.12. The natural map K → holim ε∗Is is a quasi–
isomorphism.

Proof: It suffices to show that for all n the map Kn,∗ → holim ε∗nIs
is a quasi-isomorphism, where εn : Un → T is the projection. Let Sn
be a site inducing Un as in 2.3.1. We show that for any integer i the
map of presheaves on the subcategory of Sn satisfying the finiteness
assumption in 2.3.1 (i)

(V→ Un) 7→ Hi(V,Kn,∗)→ Hi(V, holim ε∗nIs)

is an isomorphism. For this note that for every s there is a distinguished
triangle

Hs(Kn,∗)[−s]→ ε∗nIs → ε∗nIs−1

and hence by the assumption 2.3.1 (i) the map

(2.3.iv) Hi(V, ε∗nIs)→ Hi(V, ε∗nIs−1)
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is an isomorphism for s < i − n0. Since each ε∗nIs is a complex of
injectives, the complex

∏
s ε

∗
nIs is also a complex of injectives. Therefore

Hi(V,
∏
s

ε∗nIs) = Hi(
∏
s

ε∗nIs(V)) =
∏
s

Hi(ε∗nIs(V)).

It follows that there is a canonical long exact sequence

−−−→
∏

s Hi(ε∗nIs(V))
1−shift−−−−→

∏
s Hi(ε∗nIs(V)) −−−→ Hi(V, holim ε∗nIs) −−−→ .

From this and the fact that the maps 2.3.iv are isomorphisms for s
sufficiently negative it follows that the cohomology group Hi(V, holim ε∗nIs)
is isomorphic to Hi(V,Kn,∗) via the canonical map. Passing to the as-
sociated sheaves we obtain the proposition. �

Corollary 2.3.13. Every object K ∈ DC(tot(A+)) is in the essential
image of the functor

ε∗ : DC(A(∅))→ DC(tot(A+)).

Proof: Since ε∗ also commutes with products and hence also ho-
motopy limits we find that K ' ε∗(holim Is) in DC(tot(A+)) (note that
Hi(holimIs) is in C since this can be checked after applying ε∗). �

Lemma 2.3.14. Let [n] 7→ Kn be a cartesian section of [n] 7→ D(Un,Λ)
such that Exti(Kn,Kn) = 0 for all i < 0. Then (Kn) is induced by an
object of D(tot(A+)).

Proof: Represent each Kn by a homotopically injective complex
(denoted by the same letter) in C(Un,Λ) for every n. For each mor-
phism ∂i : [n] → [n + 1] (the unique morphism whose image does not
contain i) choose a ∂i-map of complexes ∂∗i : Kn → Kn+1 inducing the
given map in D(Un+1,Λ) by the strictly simplicial structure. The proof
then proceeds by the same argument used to prove [2], 3.2.9. �

Combining this with 2.3.13 we obtain 2.3.3. �

3. Dualizing complex

3.1. Dualizing complexes on algebraic spaces. Let w : W→ S
be a separated5 morphism of finite type with W an algebraic space.
We’ll define Ωw by glueing as follows. By the comparison lemma [13],

III.4.1, the étale topos Wét can be defined using the site Étale(W)
whose objects are étale morphisms A : U→W where a : U→ S is affine
of finite type. The localized topos Wét|U coincides with Uét. Notice that

5Probably one can assume only that w quasi-separated, cf. [13], XVII.7; but we
do not need this more general version.
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this is not true for the corresponding lisse-étale topos. This fact will
cause some difficulties below.

Unless otherwise explicitly stated, we will ring the various étale or
lisse-étale topos which will be appear by the constant Gorenstein ring
Λ of dimension 0 of the introduction.

Let Ω denote the dualizing complex of S, and let α : U→ S denote
the structural morphism. We define

(3.1.i) ΩA = α!Ω ∈ D(Uét,Λ) = D(Wét|U).

which is the (relative) dualizing complex of U, and therefore one gets
by biduality [4], «Th. finitude» 4.3,

(3.1.ii) Rhom(ΩA,ΩA) = Λ

implying at once

(3.1.iii) Ext iWét|U
(ΩA,ΩA) = 0 if i < 0.

We want to apply the glueing theorem 2.3.3. Let us therefore con-
sider a diagram

V
σ //

β

##

B   A
AA

AA
AA

A U

α

||

A~~}}
}}

}}
}}

W

��
S

with a commutative triangle and A,B ∈ Étale(W). Since A and B are
étale, the morphism σ is also étale so there is a functorial isomorphism

σ∗ΩA = ΩB.

Therefore (ΩA)A∈Étale(W) defines locally an object Ωw of D(W) with

vanishing negative Ext ’s (recall that w : W → S is the structural
morphism). By 2.3.3, we get

Proposition 3.1.1. There exists a unique Ωw ∈ D(Wét) such that
Ωw|U = ΩA.

We need functoriality for smooth morphisms.

Lemma 3.1.2. If f : W1→W2 is a smooth S-morphism of relative
dimension d between algebraic space separated and of finite type over S
with dualizing complexes Ω1,Ω2, then

f ∗Ω2 = Ω1〈 − d〉.
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Proof: Start with U2→W2 étale and surjective with U2 affine say.
Then, W̃1 = W1 ×U2 W2 is an algebraic space separated and of finite
type over S. Let U1→ W̃1 be a surjective étale morphism with U1 affine
and let g : U1→U2 be the composition U1→ W̃1→U2. It is a smooth
morphism of relative dimension d between affine schemes of finite type
from which follows the formula g!(−) = g∗(−)〈d〉. Therefore, the pull-
backs of L1 = Ω1〈−d〉 and f ∗Ω2 on U1 are the same, namely ΩU1 . One
deduces that these complexes coincide on the covering sieve W1ét|U1

and therefore coincide by 2.3.4 (because the relevant negative Ext i’s
vanish). �

3.2. Étale dualizing data. Let X → S be an algebraic S-stack locally
of finite type. Let A : U→X in Lisse-Et(X ) and α : U→ S the com-
position U→X → S. We define

(3.2.i) KA = Ωα〈 − dA〉 ∈ Dc(Uét,Λ)

where dA is the relative dimension of A (which is locally constant). Up
to shift and Tate torsion, KA is the (relative) dualizing complex of U
and therefore one gets by biduality

(3.2.ii) Rhom(KA,KA) = Λ and Ext iUét
(KA,KA) = 0 if i < 0.

We need again a functoriality property of KA. Let us consider a
diagram

V
σ //

β

""

B   @
@@

@@
@@

U

α

||

A~~~~
~~

~~
~

X

��
S

with a 2-commutative triangle and A,B ∈ Lisse-Et(X ).

Lemma 3.2.1. There is a functorial identification

σ∗KA = KB.

Proof: Let W = U ×X V which is an algebraic space. One has a
commutative diagram with cartesian square

W
b //

a

��

U

A
��

V

s

CC

B
//

σ
>>}}}}}}}}
X

.
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In particular, a, b are smooth and separated like A,B. One deduces
a commutative diagram

W
b //

a

��

U

α

��
V

s

CC

β
//

σ
>>}}}}}}}}
S

.

I claim that

(3.2.iii) b∗KA = a∗KB = Kw.

where w denotes the morphism W→X .
Indeed, a, b being smooth of relative dimensions dA, dB, one has

3.1.2

b∗KA = b∗Ωα〈 − dA〉 = Ωγ〈 − dA − dB〉
and analogously

a∗KB = a∗Ωβ〈 − dB〉 = Ωγ〈 − dB − dA〉,

where γ : W → S is the structure morphism. Pulling back by s gives
the result. �

Remark 3.2.2. Because all S-schemes of finite type satisfy cdΛ(X) <
∞, we know that KX is not only of finite quasi-injective dimension but
of finite injective dimension [14], I.1.5. By construction this implies
that KA is of finite injective dimension for A as above.

3.3. Lisse-étale dualizing data. In order to define ΩX ∈ D(Xlis-ét) by
glueing, we need glueing data κA ∈ D(Xlis-ét|U) for objects A : U → X
of Lisse-Et(X ). The inclusion

Étale(U) ↪→ Lisse-Et(X )|U

induces a continuous morphism of sites. Since finite inverse limits exist
in Étale(U) and this morphism of sites preserves such limits, it defines
by [13], IV.4.9.2, a morphism of topos (we abuse notation slightly and
omit the dependence on A from the notation)

ε : Xlis-ét|U→Uét.

3.3.1. Let us describe more explicitely the morphism ε. Let Lisse-Et(X )|U
denote the category of morphisms V→ U in Lisse-Et(X ). The category
Lisse-Et(X )|U has a Grothendieck topology induced by the topology on
the site Lisse-Et(X ), and the resulting topos is canonicallly isomorphic
to the localized topos Xlis-ét|U. Note that there is a natural inclusion
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Lisse-Et(U) ↪→ Lisse-Et(X )|U but this is not an equivalence of cat-
egories since for an object (V → U) ∈ Lisse-Et(X )|U the morphism
V → U need not be smooth. It follows that an element of Xlis-ét|U is
equivalent to giving for every U–scheme of finite type V → U, such
that the composite V→ U→ X is smooth, a sheaf FV ∈ Vét together
with morphisms f−1FV → FV′ for U–morphisms f : V′ → V. Fur-
thermore, these morphisms satisfy the usual compatibility with com-
positions. Viewing Xlis-ét|U in this way, the functor ε−1 maps F on Uét

to FV = π−1F ∈ Vét where π : V→U ∈ Lisse-Et(X )|U. For a sheaf
F ∈ Xlis-ét|U corresponding to a collection of sheaves FV, the sheaf ε∗F
is simply the sheaf FU.

In particular, the functor ε∗ is exact and therefore H∗(U,F) =
H∗(Uét,FU) for any sheaf of Λ-modules of X .

3.3.2. A morphism f : U→V of Lisse-Et(X ) induces a diagram

(3.3.i)

Xlis-ét|U
ε−−−→ Uét

f

y y
Xlis-ét|V

ε−−−→ Vét

where Xlis-ét|U→Xlis-ét|V is the localization morphism [13], IV.5.5.2,
which we still denote by f slightly abusively. For a sheaf F ∈ Vét, the
pullback f−1ε−1F is the sheaf corresponding to the system which to
any p : U′ → U associates p−1f−1F . In particular, f−1 ◦ε−1 = ε−1 ◦f−1

which implies that 3.3.i is a commutative diagram of topos. We define

(3.3.ii) κA = ε∗KA ∈ D(Xlis-ét|U).

By the preceding discussion, if

U
f //

A   @
@@

@@
@@

V

B~~~~
~~

~~
~

X
is a morphism in Lisse-Et(X ), we get

f ∗κB = κA

showing that the family (κA) defines locally an object of D(Xlis-ét).

3.4. Glueing the local dualizing data. Let A ∈ Lisse-Et(X ) and ε :
Xlis-ét|U→Uét be as above. We need first the vanishing of Ext i(κA, κA), i <
0.

Lemma 3.4.1. Let F ,G ∈ D(Uét). One has
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(i) Exti(ε∗F , ε∗G) = Exti(F ,G).
(ii) The étale sheaf Ext i(ε∗F , ε∗G)U on Uét is Ext iUét

(F ,G).

Proof: Since ε∗ is exact and for any sheaf F ∈ Uét one has F =
ε∗ε

∗F, the adjunction map F → Rε∗ε
∗F is an isomorphism for any

F ∈ D(Uét). By trivial duality, one gets

ε∗Rhom(ε∗F , ε∗G) = Rhom(F , ε∗ε∗G) = Rhom(F ,G).

Taking HiRΓ gives (i).
By construction, Ext i(ε∗F , ε∗F)U is the sheaf associated to the

presheaf on Uét which to any étale morphism π : V → U associates
Exti(π∗ε∗F , π∗ε∗G) where π∗ is the the pull-back functor associated to
the localization morphism

(Xlis-ét|U)|V = Xlis-ét|V→Xlis-ét|U

[13], V.6.1. By the commutativity of the diagram 3.3.i, one has π∗ε∗ =
ε∗π∗. Therefore

Exti(π∗ε∗F , π∗ε∗G) = Exti(ε∗π∗F , ε∗π∗G) = ExtiVét
(π∗F , π∗G),

the last equality is by (i). Since Ext iUét
(F ,G) is also the sheaf associated

to this presheaf we obtain (ii). �
Using 3.2.ii, one obtains

Corollary 3.4.2. One hasRhom(κA, κA) = Λ and therefore Ext i(κA, κA) =
0 if i < 0.

Now choose a presentation p : X→ X with X a scheme. The object
κp ∈ D(Xlis-ét|X) then comes with descent data to Xlis-ét which by 2.3.3
and the above discusison is effective. We therefore obtain:

Proposition 3.4.3. There exists ΩX (p) ∈ D(b)(Xlis-ét) inducing κA for
all A ∈ Lisse-Et(X )|X. It is well defined up to unique isomorphism.

The independence of the presentation is straightforward and is left
to the reader :

Lemma 3.4.4. Let pi : Xi→X , i = 1, 2 two presentations as above.
There exists a canonical, functorial isomorphism ΩX (p1)

∼−→ ΩX (p2).

Definition 3.4.5. The dualizing complex of X is the ”essential” value
ΩX ∈ D(b)(Xlis-ét) of ΩX (p), where p runs over presentations of X . It is
well defined up to canonical functorial isomorphism and is characterized
by ΩX|U = ε∗KA for any A : U→X in Lisse-Et(X ).
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3.5. Biduality. For A,B any abelian complexes of some topos, there
is a biduality morphism

(3.5.i) A→Rhom(Rhom(A,B),B)

(replace B by some homotopically injective complex isomorphic to it
in the derived catgory).

In general, it is certainly not an isomorphism.

Lemma 3.5.1. Let u : U→ S be a separated S-scheme (or algebraic
space) of finite type and A ∈ Dc(Uét,Λ). Then the biduality morphism

A→Rhom(Rhom(A,KU),KU)

is an isomorphism (where KU is -up to shift and twist- the dualizing
complex of Uét).

Proof: If A is moreover bounded, it is the usual theorem of [4].
Let us denote by τn the two-sides truncation functor

τ≥−nτ≤n.

We know that KU is a dualizing complex [14], exp. I, and is of finite
injective dimension (3.2.2); the homology in degree n of the biduality
morphism A→DD(A) is therefore the same as the homology in degree
n of the biduality morphism τmA→DD(τmA) for m large enough and
the lemma follows. �

We will be interested in a commutative diagram

V
f //

B   @
@@

@@
@@

U

A~~~~
~~

~~
~

X
as above.

Lemma 3.5.2. Let F ∈ Dc(Xlis-ét) and let FU ∈ Dc(Uét) be the object
obtained by restriction.

(i) One has f ∗Rhom(FU,KA) = Rhom(f ∗FU, f
∗KA) = Rhom(f ∗FU,KB).

(ii) There exist integers a < b (independent of F) such that for
every i ∈ Z

Ext i(FU,KA) = Ext i(τ≥i−bτ≤i−aFU,KA).

Moreover, Rhom(FU,KA) is constructible.

Proof: Let’s prove (i). By 3.2.1, one has f ∗KA = KB, therefore
one has a morphism

f ∗Rhom(FU,KA)→Rhom(f ∗FU,KB).
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To prove that it is an isomorphism, consider first the case when f
is smooth. Because both KA and KB are of finite injective dimension
(3.2.2), one can assume that F is bounded where it is obviously true
by reduction to F the constant sheaf (or use [14], I.7.2). Therefore the
result holds when f is smooth.

¿From the case of a smooth morphism, one reduces the proof in
general to the case when X is a scheme. Let FX ∈ Dc(Xét) denote
the complex obtained by restricting F . By the smooth case already
considered, we have

f ∗Rhom(FU,KA) ' f ∗A∗Rhom(FX ,KX )

= B∗Rhom(FX ,KX )

' Rhom(B∗FX ,B∗KX )

' Rhom(f ∗FU, f
∗KA).

The existence of a < b as in (ii) follows immediately from the fact
that KA has finite injective dimension 3.2.2. To verify thatRhom(FU,KA)
is constructible it suffices by the first statement in (ii) to consider the
case when F is bounded in which case the result follows from [14], I.7.1.
�

Lemma 3.5.3. Let F ∈ Dc(Xlis-ét). Then,

ε∗RhomUét
(FU,KA) = Rhom(F ,ΩX )|U

where FU = ε∗F|U is the restriction of F to Étale(U).

Proof: By definition of constructibility,Hi(F) are cartesian sheaves.
In other words, ε∗ being exact, the adjunction morphism

ε∗FU = ε∗ε∗F|U→F|U
is an isomorphism. We therefore have

Rhom(F ,Ω)|U = Rhom(F|U,Ω|U)

= Rhom(ε∗FU, ε
∗KA)

Therefore, we get a morphism

ε∗RhomUét
(FU,KA)→Rhom(ε∗FU, ε

∗KA) = Rhom(F ,ΩX )|U.

By 3.4.1, one has for any object f : V→ U in Lisse-Et(X )|U
Ext i(ε∗FU, ε

∗KA)V = Ext iVét
(f ∗FU, f

∗KA).

But, one has

Hi(ε∗RhomUét
(FU,KA))V = f ∗ Ext iUét

(FU,KA)
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and the lemma follows from 3.5.2. �
One gets immediately (cf. [14], I.1.4)

Corollary 3.5.4. ΩX is of locally finite quasi-injective dimension.

Remark 3.5.5. It seems over-optimistic to think that ΩX would be of
finite injective dimension even if X is a scheme.

Lemma 3.5.6. If A ∈ Dc(X ), then Rhom(A,ΩX ) ∈ Dc(X ).

Proof: Immediate consequence of 3.5.2 and 3.5.3. �

Corollary 3.5.7. The (contravariant) functor

DX :

{
Dc(X ) → Dc(X )
F 7→ Rhom(F ,ΩX )

is an involution. More precisely, the morphism

ι : Id→DX ◦DX

induced by 3.5.i is an isomorphism.

Proof: We have to prove that the cone C of the biduality morphism
is zero in the derived category, that is to say

CU = ε∗C|U = 0 in Dc(Uét).

But we have

ε∗(Rhom(Rhom(F ,ΩX ),ΩX ))|U = ε∗Rhom(Rhom(F ,ΩX )|U,ΩX|U)
3.5.3
= ε∗Rhom(ε∗Rhom(FU,KA),ΩX|U)

= Rhom(Rhom(FU,KA), ε∗ε
∗KA)

= Rhom(Rhom(FU,KA),KA)
3.5.1
= FU,

where the third equality is by trivial duality. �

Remark 3.5.8. Verdier duality DX identifies D
(a)
c and D

(−a)
c with a =

∅,±, b and the usual conventions −∅ = ∅ and −b = b.

Proposition 3.5.9. One has a canonical (bifunctorial) morphism

Rhom(A,B) = Rhom(D(B),D(A))

for all A,B ∈ Dc(X ).

Proof: By [16], 18.6.9, we have canonical identifications for any
three complexes A,B,C ∈ Dc(Xlis-ét)
(3.5.ii)

Rhom(A,Rhom(B,C)) = Rhom(A
L
⊗B,C) = Rhom(B,Rhom(A,C)).
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One gets then

Rhom(D(B),D(A)) = Rhom(D(B),Rhom(A,ΩX ))
3.5.ii
= Rhom(A,D ◦D(B))

= Rhom(A,B).

�

4. The 6 operations

4.1. The functor Rf∗. Let f : X → Y be a finite type morphism be-
tween S-stacks locally of finite type. We then have the derived functor
of f∗

Rf∗ : D(X )→ D(Y).

Note that in general Rf∗ does not map Dc(X ) to Dc(Y). For example
consider BGm → Spec(k) and A = ⊕i≥0Λ[i]. However, by [23], 9.9,
Rf∗ restricts to a functor

Rf∗ : D(+)
c (X )→ D(+)

c (Y).

4.2. The functor Rhom(−,−). Let X be an S–stack locally of finite
type.

Lemma 4.2.1. Let F ∈ Dc(X ) and G ∈ Dc(X ), and let j be an in-
teger. Then the restriction of the sheaf Hj(RhomXlis-ét

(F,G)) to the
étale topos of any object U ∈ Lisse-Et(X ) is canonically isomorphic to
Ext jUét

(FU,GU), where FU and GU denote the restrictions to Uét.

Proof: The sheaf Hj(RhomXlis-ét
(F,G)) is the sheaf associated

to the presheaf which to any smooth affine X–scheme U associates
ExtjXlis-ét|U

(F,G), where Xlis-ét|U denotes the localized topos. Let ε :

Xlis-ét|U → Uét be the morphism of topos induced by the inclusion of

Étale(U) into Lisse-Et(X )|U. Then since F and G have constructible
cohomology, the natural maps ε∗ε∗F → F and ε∗ε∗G → G are isomor-
phisms in D(Xlis-ét|U). Since the natural map id → ε∗ε

∗ is an isomor-
phism we get as in 3.4.1 (i)

ExtjXlis-ét|U
(F,G) ' ExtjXlis-ét|U

(ε∗ε∗F, ε
∗ε∗G)

' ExtjUét
(ε∗F, ε∗ε

∗ε∗G)

' ExtjUét
(ε∗F, ε∗G).

Sheafifying this isomorphism we obtain the isomorphism in the lemma.
�
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Corollary 4.2.2. If F ∈ D(−)
c (X ) and G ∈ D(+)

c (X ), the complex

RhomXlis-ét
(F,G) lies in D(+)

c (X ).

Proof: By the previous lemma and the constructibility of the coho-
mology sheaves of F and G, it suffices to prove the following statement:
Let f : V → U be a smooth morphism of schemes of finite type over
S, and let F ∈ D−

c (Uét) and G ∈ D+
c (Uét). Then the natural map

f ∗RhomUét
(F,G)→ RhomVét

(f ∗F, f∗G) is an isomorphism as we saw
in the proof of 3.5.2 (see [14], I.7.2). �

Proposition 4.2.3. Let X• → X be a smooth hypercover of X by a
simplicial scheme X•. Let F,G ∈ Dc(Xlis-ét), and let Fét,Gét ∈ Dc(X•,ét)
denote the restrictions of F and G respectively to the étale topos of X•.
Then there is a canonical isomorphism

(4.2.i) RhomXlis-ét
(F,G)|X•,ét ' RhomX•,ét

(Fét,Gét).

In particular, if F ∈ D(−)
c (X ) and G ∈ D

(+)
c thenRhomX•,ét

(Fét,Gét)
maps under the equivalence of categories Dc(X•,ét) ' Dc(Xlis-ét) to
RhomXlis-ét

(F,G).

Proof: Let Xlis-ét|X• denote the strictly simplicial localized topos
and consider the morphisms of topos

(4.2.ii) Xlis-ét
π←−−− Xlis-ét|X•

ε−−−→ X•,ét.

Lemma 4.2.4. Let A,B ∈ D(Xlis-ét). Then there is a canonical iso-
morphism

(4.2.iii) π∗RhomXlis-ét
(A,B) ' RhomXlis-ét|X•

(π∗A, π∗B).

Proof: Let I· be a homotopically injective representative for B, and
let π∗I· → J· be a quasi-isomorphism with J· homotopically injective.
Then by construction [16], 18.4.2, we have

π∗RhomXlis-ét
(A,B) = π∗Hom·

Xlis-ét
(A, I·) = Hom·

Xlis-ét|X•
(π∗A, π∗I·),

and
RhomXlis-ét|X•

(π∗A, π∗B) = Hom·
Xlis-ét|X•

(π∗A, J·).

We define 4.2.iii to be the map

Hom·
Xlis-ét|X•

(π∗A, π∗I·)→ Hom·
Xlis-ét|X•

(π∗A, J·)

induced by the map π∗I· → J·. To check that this map is a quasi-
isomorphism, it suffices to show that for every n the map

(4.2.iv) Hom·
Xlis-ét|Xn

(π∗nA, π
∗
nI
·)→ Hom·

Xlis-ét|Xn
(π∗nA, J

·
n)

is a quasi-isomorphism, where πn : Xlis-ét|Xn → Xlis-ét is the localization
morphism and J·n is the restriction of J· to Xlis-ét|Xn .
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For this note that π∗n is an exact functor on the category of abelian
sheaves in Xlis-ét|Xn and π∗n admits an exact left adjoint πn! (as is the
case for any localization morphism). Therefore π∗nI

· is a homotopically
injective resolution of π∗nB. Also the restriction functor from abelian
sheaves on Xlis-ét|X• to abelian sheaves on Xlis-ét|Xn admits an exact left
adjoint (see for example [13], Vbis.1.2.11) and is exact. It follows that
J·n is also a homotopically injective resolution of π∗nB and so the map
4.2.iv is a quasi-isomorphism. �

By definition Fét = ε∗π
∗F and Gét = ε∗π

∗G, and since F,G ∈
Dc(Xlis-ét) the natural maps ε∗Fét → π∗F and ε∗Gét → π∗G are isomor-
phisms (2.2.3). Using 4.2.4 we then obtain

RhomXlis-ét
(F,G)|X•,ét ' ε∗π

∗RhomXlis-ét
(F,G)

' ε∗RhomXlis-ét|X•
(π∗F, π∗G)

' ε∗RhomXlis-ét|X•
(ε∗Fét, ε

∗Gét)

' RhomX•,ét
(Fét,Gét),

where the last isomorphism is by trivial duality. �

4.3. The functor f ∗. The lisse-étale site is not functorial (cf. [1],
5.3.12): a morphism of stacks does not induce in general a morphism
between corresponding lisse-étale topos. In [23], a functor f ∗ is con-
structed on D+

c using cohomological descent. Using the results of 2.2.3
which imply that we have cohomological descent also for unbounded
complexes, the construction of [23] can be used to define f ∗ on the
whole category Dc.

Let us review the construction here. Let f : X →Y be a morphism
of algebraic S–stacks locally of finite type. Choose a commutative
diagram

X //

��

X

��
Y // Y

where the horizontal lines are presentations inducing a commutative
diagram of strict simplicial spaces

X•
ηX //

f•
��

X
f

��
Y•

ηY // Y .

We get a diagram of topos
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X•,ét

f•
��

Xlis-ét|X•

ηX //ΦXoo Xlis-ét

Y•,ét Ylis-ét|Y•

ΦYoo ηY // Ylis-ét.

By 2.2.6 the horizontal morphisms induce equivalences of topos

Dc(Xlis-ét) ' Dc(X•,ét), Dc(Ylis-ét) ' Dc(Y•,ét).

We define the functor f ∗ : Dc(Ylis-ét)→ Dc(Xlis-ét) to be the composite

(4.3.i) Dc(Ylis-ét) ' Dc(Y•,ét)
f∗•−−−→ Dc(X•,ét) ' Dc(Xlis-ét),

where f ∗• denotes the derived pullback functor induced by the morphism
of topos f• : X•,ét → Y•,ét. Note that f ∗ takes distinguished triangles
to distinguished triangles since this is true for f ∗• .

Proposition 4.3.1. Let A ∈ Dc(Y) and let B ∈ D(+)
c (X ), and assume

f is of finite type. Then there is a canonical isomorphism

(4.3.ii) Rhom(A, f∗B)→ f∗Rhom(f ∗A,B).

Proof: We first reduce to the case when A ∈ D−
c (Y). For this

we use some standard properties of homotopy limits and colimits as
discussed for example in [3].

Lemma 4.3.2. Let (T,O) be a ringed topos, and let C ∈ D(O) be a
complex. Then C is isomorphic to hocolimnτ≤nC.

Proof: By definition hocolimnτ≤nC is the cone of the morphism

1− shift : ⊕nτ≤nC→ ⊕nτ≤nC.

Let π : ⊕nτ≤nC→ C be the map induced by the natural maps τ≤nC→
C. Then π and π ◦ shift are equal, and therefore there exists a map
from the cone

hocolim τ≤nC→ C.

We claim that this map is a quasi-isomorphism. For this note that by
construction we have

Hi(hocolim τ≤nC) = lim−→H
i(τ≤nC) = Hi(C)

for all i. �
We therefore have a distinguished triangle

⊕nτ≤nA
1−shift−−−−→ ⊕nτ≤nA −−−→ A
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which induces a commutative diagram

Rhom(⊕nτ≤nA, f∗B)
1−shift−−−−→ Rhom(⊕nτ≤nA, f∗B) −−−→ Rhom(A, f∗B)

'
y y'∏

nRhom(τ≤nA, f∗B)
1−shift−−−−→

∏
nRhom(τ≤nA, f∗B).

We conclude that

Rhom(A, f∗B) ' holim Rhom(τ≤nA, f∗B).

Similarly since f ∗τ≤n = τ≤nf
∗ we have

Rhom(f ∗A,B) ' holim Rhom(f ∗τ≤nA,B),

and since f∗ commutes with homotopy limits (since f∗ commutes with
products) we conclude that

f∗Rhom(f ∗A,B) ' holim f∗Rhom(f ∗τ≤nA,B).

This reduces the proof of 4.3.1 to the case when A ∈ D−
c (Y). In this

case both sides of 4.3.ii have constructible cohomology, so it suffices to
construct the isomorphism after restricting to Y•,ét.

By 4.2.3 and [23], 9.8, we have

Rf∗Rhom(f ∗A,B)|Y•,ét
' Rf•∗RhomX•,ét

(f ∗•A|Y•,ét
,B|X•,ét

).

The result therefore follows from the usual adjunction
(4.3.iii)

Rf•∗RhomX•,ét
(f ∗• (A|Y•,ét

),B|X•ét) ' RhomY•,ét
(A|•,ét, f∗B|X•ét).

�

4.4. Definition of Rf!, f
!. Let f : X →Y be a morphism of stacks

(locally of finite type over S) of finite type. Recall (4.1) that Rf∗ maps

D
(+)
c (Xlis-ét) to D

(+)
c (Ylis-ét).

Definition 4.4.1. We define

Rf! : D(−)
c (Xlis-ét)→D(−)

c (Ylis-ét)

by the formula
Rf! = DY ◦ Rf∗ ◦DX ,

and
f ! : Dc(Ylis-ét)→Dc(Xlis-ét)

by the formula
f ! = DX ◦ f ∗ ◦DY .

By construction, one has

(4.4.i) f !ΩY = ΩX .
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Proposition 4.4.2. Let A ∈ D
(−)
c (Xlis-ét) and B ∈ Dc(Ylis-ét). Then

there is a (functorial) adjunction formula

Rf∗Rhom(A, f !B) = Rhom(Rf!A,B).

Proof: We write D for DX ,DY and A′ = D(A) ∈ D
(+)
c (X ). One

has

Rhom(Rf!D(A′),B) = Rhom(D(Rf∗A
′),B)

= Rhom(D(B),Rf∗A
′) (3.5.9)

= Rf∗Rhom(f ∗D(B),A′) (4.3.1)

= Rf∗Rhom(D(A′), f !B) (3.5.9)

�

4.5. Projection formula.

Lemma 4.5.1. Let A,B ∈ Dc(X ).

(i) One has

Rhom(A,B) = DX (A
L
⊗DX (B)).

(ii) If A,B ∈ D
(−)
c (X ), then A

L
⊗B ∈ D

(−)
c (X ).

Proof: Let ΩX be the dualizing complex of X .

Rhom(A,B) = Rhom(DX (B),Rhom(A,ΩX )) (3.5.9)

= Rhom(DX (B)
L
⊗A,ΩX ) (3.5.ii)

= DX (A
L
⊗DX (B))

proving (i). For (ii), using truncations, one can assume that A,B are
sheaves: the result is obvious in this case. �

Corollary 4.5.2. Let f : X → Y be a morphism as in 4.4, and let

B ∈ D
(−)
c (Y),A ∈ D

(−)
c (X ). One has the projection formula

Rf!(A
L
⊗ f ∗B) = Rf!A

L
⊗B.

Proof: Notice that the left-hand side is well defined by 4.5.1. One
has

Rf!(A
L
⊗ f ∗B) = DY ◦ Rf∗ ◦DX (A

L
⊗DXf

!DYB)

= DY ◦ Rf∗(Rhom(A, f !DYB)) (4.5.1)

= DY(Rhom(Rf!A,DYB)) (4.4.2)

= Rf!A
L
⊗B (4.5.1) and (3.5.7).
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�

Corollary 4.5.3. For all A ∈ D
(−)
c (Y),B ∈ D

(+)
c (Y), one has

f !Rhom(A,B) = Rhom(f ∗A, f !B).

Proof: By lemma 4.5.1 and biduality, the formula reduces to the
formula

f ∗(A
L
⊗D(B)) = f ∗A

L
⊗ f ∗D(B).

Using suitable presentation, one is reduced to the obvious formula

f ∗• (A•
L
⊗B•) = f ∗•A•

L
⊗ f ∗•B•

for a morphism f• of simplicial étale topos. �

4.6. Computation of f ! for f smooth. Let f : X →Y be a smooth
morphism of stacks of relative dimension d. Using 2.3.4, one gets im-
mediately the formula

f ∗ΩY = ΩX 〈−d〉
(choose a presentation of Y→Y and then a presentation X→XY; the
morphism X→Y being smooth, one checks that these two complexes
coincide on Xlis-ét|X and have zero negative Ext ’s).

Lemma 4.6.1. Let A ∈ Dc(Y). Then, the canonical morphism

f ∗Rhom(A,ΩY)→Rhom(f ∗A, f∗ΩY)

is an isomorphism.

Proof: Using 3.4.1, one is reduced to the corresponding statement
for étale sheaves on quasi-compact algebraic spaces. Because, in this
case, both ΩY and f ∗ΩY are of finite injective dimension, one can as-
sume that A is bounded or even a sheaf. The assertion is well-known
in this case (by dévissage, one reduces to A = ΛY in which case the
assertion is trivial, cf. [14], exp. I). �

Corollary 4.6.2. Let f : X →Y be a smooth morphism of stacks of
relative dimension d. One has f ! = f ∗〈d〉.

Let j : U →X be an open immersion. Let us denote for a while by
j¡ the extension by zero functor : it is an exact functor on the category
sheaves preserving constructibility and therefore passes to the derived
category Dc.

Proposition 4.6.3. One has j! = j∗ and j! = j¡.
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Proof: The first equality is a particular case of 4.6.2. Because j∗

has a left adjoint j¡ which is exact, it preserves (homotopical) injec-
tivity. Let A,B be constructible complexes on U ,X respectively and
assume that B is homotopically injective. One has

Rhom(j¡A,B) = Hom(j¡A,B)

= Hom(A, j∗B) (adjunction)

= Rhom(A, j∗B)

Taking H0, one obtains that j∗ is the right adjoint of j¡ proving the
lemma because j! = j∗ is also the right adjoint of j!. �

4.7. Computation of Ri! for i a closed immersion. Let i : X ↪→ Y
be a closed immersion and j : U = Y −X ↪→ Y the open immersion of
the complement : both are representable. We define the cohomology
with support on X for any F ∈ Xlis-ét as follows. First, for any Y→Y in
Lisse-Et(Y), the pull-back YU→U is in Lisse-Et(U) and YU→U→Y
is in Lisse-Et(Y). Then, we define H0

X (F)

(4.7.i) Γ(Y,H0
X (F)) = ker(Γ(Y,F)→Γ(YU ,F))

and RΓX is the total derived functor of the left exact functor H0
X .

As usual if I is an injective Λ-module on Y , then the adjunction
map I→ j∗j

∗I is surjective. It follows that for any F ∈ D+(Y) there is
a distinguished triangle

RH0
X (F)→ F→ Rj∗j

∗F→ RH0
X (F)[1].

This implies in particular that if F ∈ D
(+)
c (Y), then RH0

X (F) is also in

D
(+)
c (Y).

Lemma 4.7.1. One has ΩX = i∗RΓX (ΩY).

Proof: If i is a closed immersion of schemes (or algebraic spaces),
one has a canonical (and functorial) isomorphism, simply because i∗H0

X
is the right adjoint of i∗. If K denotes one of the objects on the two
sides of the equality to be proven, one has therefore Ext i(K,K) = 0 for
i < 0. Therefore, these isomorphisms glue by 2.3.3. �

Proposition 4.7.2. The functor B 7→ i∗RΓX (B) is the right adjoint
of i∗, and therefore coincides with i!. More generally, one has

(4.7.ii) Rhom(i∗A,B) = i∗Rhom(A, i∗RH0
X (B))

for all A ∈ Dc(X ),B ∈ D
(+)
c (Y). Moreover, one has one has i! = i∗ and

i∗ has a right adjoint, the sections with support on X .
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Proof: If A,B are sheaves on Ylis-ét, one has by definition of H0
X

an isomorphism

hom(i∗A,B) ' hom(i∗A,H
0
X (B)).

This isomorphism induces a morphism of derived functors

(4.7.iii) Rhom(i∗A,B)→ Rhom(i∗A,RH0
X (B)).

We claim that if A ∈ Dc(X ) and B ∈ D
(+)
c (Y) then 4.7.iii is an iso-

morphism. To verify this it suffices to show that for any (U → Y) ∈
Lisse-Et(Y), the map on Uét

Rhom(i∗A,B)U → Rhom(i∗A,RH0
X (B))U

is an isomorphism. Using 3.4.1 this reduces to the analogous state-
ment in the étale topos of U for sheaves A,B ∈ Dc(Uét). Now in this
case we can define for any sheaf F on Uét the sheaf i∗UH0

XU
(F), where

iU : XU ↪→ U denotes the inverse image of X . The functor i∗UH0
XU

(−) is

right adjoint to the exact functor iU∗, and therefore i∗UH0
XU

(−) sends ho-
motopically injective complexes to homotopically injective complexes.
This implies that

Rhom(iU∗A,B) ' iU∗Rhom(A, i∗URH0
XU

(B)).

On the other hand, the adjunction maps i∗UiU∗A→ A and RH0
XU

(B)→
iU∗i

∗
URH0

XU
(B) are isomorphisms, so we have

iU∗Rhom(A, i∗URH0
XU

(B)) ' iU∗Rhom(i∗UiU∗A, i
∗
URH0

XU
(B))

' Rhom(iU∗A, iU∗i
∗
URH0

XU
(B))

' Rhom(iU∗A,RH0
XU

(B)).

This implies that 4.7.iii is an isomorphism.
This also shows that the natural maps

B→ i∗i
∗RH0

X (B), i∗i∗A→ A

are isomorphisms. From this and 4.3.1 we obtain

Rhom(i∗A,RH0
X (B)) ' Rhom(i∗A, i∗i

∗RH0
X (B))

' i∗Rhom(i∗i∗A, i
∗RH0

X (B))

' i∗Rhom(A, i∗RH0
X (B))

proving 4.7.ii.
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One gets therefore

i!A = Rhom(i∗Rhom(A,ΩX ),ΩY)
= i∗Rhom(Rhom(A,ΩX ), i∗RH0

X (ΩY))
= i∗Rhom(Rhom(A,ΩX ),ΩX ) (4.7.1)
= i∗A (3.5.1)

�

4.8. Computation of f ! for a universal homeomorphism. By
universal homeomorphism we mean a representable, radiciel and sur-
jective morphism. By Zariski’s main theorem, such a morphism is
finite.

In the schematic situation, we know that such a morphism induces
an isomorphism of the étale topos [13], VIII.1.1. In particular, f ∗

is also a right adjoint of f∗. Being exact, one gets in this case an
identification f ∗ = f !. In particular, f ∗ identifies the corresponding
dualizing complexes. Exactly as in the proof of 4.7.1, one gets

Lemma 4.8.1. Let f : X →Y be a universal homeomorphism of stacks.
One has f ∗ΩX = ΩY .

One gets therefore

Corollary 4.8.2. Let f : X →Y be a universal homeomorphism of
stacks. One has f ! = f ∗ and Rf! = Rf∗.

Proof: By a similar argument to the one used in the proof of 4.6.1
the natural map

f ∗Rhom(A,ΩY)→ Rhom(f ∗A, f∗ΩY)

is an isomorphism. We therefore have

f !A = Rhom(f ∗Rhom(A,ΩY),ΩX )
= Rhom(Rhom(f ∗A, f∗ΩY),ΩX )
= Rhom(Rhom(f ∗A,ΩX ),ΩX ) (4.8.1)
= f ∗A (3.5.1).

The last formula follows by adjunction. �

4.9. Computation of Rf! via hypercovers. Let Y be an S–scheme
of finite type and f : X → Y a morphism of finite type from an
algebraic stack X . Let X• → X be a smooth hypercover by algebraic
spaces, and for each n let dn denote the locally constant function on
Xn which is the relative dimension over X . By the construction, the
restriction KXn of the dualizing complex ΩX to Xn,ét is canonically
isomorphic to ΩXn〈−dn〉. Let KX• denote the restriction of ΩX to X•,ét.
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Let L ∈ D−
c (X ), and let L|X• denote the restriction of L to X•,ét.

Then DX (L)|X• is isomorphic to DX•(L|X•) := RhomX•,ét
(L|X• ,KX•).

In particular, the restriction of Rf!L to Yét is canonically isomorphic
to

(4.9.i) RhomYét
(Rf•∗DX•(L|X•),KY) ∈ Dc(Yét),

where f• : Xét → Yét denotes the morphism of topos induced by f .
Let Y•,ét denote the simplicial topos obtained by viewing Y as a

constant simplicial scheme. Let ε : Y•,ét → Yét denote the canonical

morphism of topos, and let f̃ : X•,ét → Y•,ét be the morphism of topos

induced by f . We have f• = ε ◦ f̃ . As in [23], 2.7, it follows that there
is a canonical spectral sequence

(4.9.ii) Epq
1 = Rqfp∗DXp(L|Xp) =⇒ Rp+qf•∗DX•(LX•).

On the other hand, we have

Rqfp∗DXp(L|Xp) = Rqfp∗Rhom(L|Xp ,ΩXp〈−dp〉) ' Hq(DY(Rfp!(L|Xp〈dp〉)),
where the second isomorphism is by biduality 3.5.7. Combining all this
we obtain

Proposition 4.9.1. There is a canonical spectral sequence

(4.9.iii) Epq
1 = Hq(DYet(Rfp!L|Xp〈dp〉)) =⇒ Hp+q(DYet(Rf!L|Yet)).

Example 4.9.2. Let k be an algebraically closed field and G a finite
group. We can then compute H∗

c(BG,Λ) as follows. We first compute
Rhom(RΓ!(BG,Λ),Λ). Let Spec(k) → BG be the surjection corre-
sponding to the trivial G–torsor, and let X• → BG be the 0–coskeleton.
Note that each Xn isomorphic to Gn and in particular is a discrete col-
lection of points. Therefore Rf!pΛ ' Hom(Gn,Λ). From this it follows
that Rhom(RΓ!(BG,Λ),Λ) is represented by the standard cochain com-
plex computing the group cohomology of Λ, and hence RΓ!(BG,Λ) is
the dual of this complex. In particular, this can be nonzero in infinitely
many negative degrees. For example if G = Z/` for some prime ` and
Λ = Z/` since in this case the group cohomology Hi(G,Z/`) ' Z/` for
all i ≥ 0.

Example 4.9.3. Let k be an algebraically closed field and P the affine
line A1 with the origin doubled. By definition P is equal to two copies of
A1 glued along Gm via the standard inclusions Gm ⊂ A1. We can then
compute RΓ!(P,Λ) as follows. Let ji : A1 ↪→ P (i = 1, 2) be the two
open immersions, and let h : Gm ↪→ P be the inclusion of the overlaps.
We then have an exact sequence

0→ h!Λ→ j1!Λ⊕ j2!Λ→ Λ→ 0.
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¿From this we obtain a long exact sequence

· · · → Hi
c(Gm,Λ)→ Hi

c(A1,Λ)⊕ Hi
c(A1,Λ)→ Hi

c(P,Λ)→ · · · .
¿From this sequence one deduces that H0

c(P,Λ) ' Λ, H2
c(P,Λ) ' Λ(1),

and all other cohomology groups vanish. In particular, the cohomology
of P is isomorphic to the cohomology of P1.

4.10. Purity and the fundamental distinguished triangle. We
consider the usual situation of a closed immersion i : X →Y of S-
stacks locally of finite type, the open immersion of the complement of
Y being j : U = Y−X →Y . For any bounded complex of sheaves A on
Y with constructible cohomology sheaves, one has the exact sequence

0→ j!j
∗A→A→ i∗i

∗A→ 0.

Therefore, for any A ∈ D
(b)
c (Y), one has the distinguished triangle

(4.6.3)

(4.10.i) j!j
∗A→A→ i∗i

∗A

which by duality gives the distinguished triangle

(4.10.ii) i∗i
!A→A→ j∗j

∗A.

Recall (4.7.2) the formula i∗i
! = RH0

X . The usual purity theorem
for S-schemes gives

Proposition 4.10.1. Purity. Assume moreover that i : X →Y is a
closed immersion of S-stacks which are regular6. Then, one has i!Λ =
Λ〈−c〉 where c denotes the codimension of i (a locally constant function
on X ).

Proof: For a closed immersion of excellent regular schemes j :
X→Y the fundamental class of X in Y determines by Gabber’s abso-
lute purity theorem [24], 3.1, a natural isomorphism

(4.10.iii) γj : ΛX〈−cj〉
∼−→ j!ΛY,

where cj is the codimension of j.
In particular, one has

τ<0Rhom(ΛX〈−c〉, j!ΛY) = τ<0Rhom(ΛX〈−c〉,ΛX〈−c〉) = 0

because ΛX is dualizing on the excellent regular scheme X. By 2.3.4, the
isomorphism γ generalizes in the case where i is only a closed immersion

6In fact, the purity statement remains valid for closed immersions of arbitrary
locally noetherian excellent regular stacks provided i! is defined as cohomology with
compact support. The proof given below generalizes in this situation without any
change.
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of excellent regular algebraic space. Now, if one has a cartesian diagram
with smooth vertical arrows

X
j //

��

Y

��
X i // Y

with Y (and therefore X) an algebraic space, one has (i!Λ)Xét
= j!ΛY.

If Y→Y is a presentation of Y and Xn (resp. Yn) denotes the n-
fold product of X (resp. Y) over X (resp. Y), we get local functorial
isomorphisms

ΛXn〈−c〉 ∼−→ i!ΛYn

inducing an isomorphism at the strict simplicial level

ΛX•〈−c〉
∼−→ i!ΛY• .

Using 2.3.4, 2.2.6 and 4.2.1, one gets that the isomorphisms 4.10.iii
glue.

5. Base change

We start with a cartesian diagram of stacks locally of finite type
over S

(5.0.iv) X ′ π //

φ
��

2

X
f
��

Y ′
p // Y ,

with f of finite type, and we would like to construct a natural base
change isomorphism

(5.0.v) p∗Rf! = Rφ!π
∗

of functors D
(−)
c (X )→D

(−)
c (Y ′). Note that this is equivalent to the

dual version:

(5.0.vi) p!Rf∗ = Rφ∗π
! : D(+)

c (X )→ D(+)
c (Y ′).

Unfortunately we are unable to construct this base change isomorphism
in full generality. However, we construct the base change isomorphism
in several special cases which suffice to define the base change isomor-
phism on the level of cohomology sheaves.



42 LASZLO and OLSSON

5.1. Smooth base change. In this subsection we prove the base
change isomorphism in the case when p (and hence also π) is smooth.
Note that in this case p∗ is defined on all of D(Y) since it is just re-
striction from Ylis-ét to Y ′lis-ét.

Proof: Because the relative dimension of p and π are the same,
by 4.6.2, one reduces the formula 5.0.vi to

p∗Rf∗ = Rφ∗π
∗.

By adjunction, one has a morphism p∗Rf∗→Rφ∗π
∗ which is an iso-

morphism by the smooth base change theorem. This therefore gives
the base change isomorphism in this case. �

Remark 5.1.1. The base change isomorphism p∗f!F ' φ!π
∗ can also

be defined as follows. For a sheaf G on Ylis-ét the pullback p∗G is simply
the restriction of G to Y ′lis-ét. It follows that there is a canonical map

p∗RhomYlis-ét
(G,ΩY)→ RhomY ′

lis-ét
(p∗G, p∗ΩY)

which if G is cartesian is an isomorphism (this follows from the same
argument proving 4.2.1). We therefore get p∗DY = DY ′p∗ and π∗DX =
DX ′π∗. Similarly there is a canonical map p∗f∗ → f ′∗π

∗ so we obtain a
canonical map

DY ′f ′∗DX ′π∗ ' DY ′f ′∗π
∗DX → DY ′p∗f∗DX ' p∗DYf∗DX .

It is immediate from the constructions that these two base change mor-
phisms agree. In summary, the base change isomorphism for a smooth
morphism p is just the natural map defined by restriction.

¿From this remark one obtains immediately the following 5.1.2 and
5.1.3 which will be used later.

Lemma 5.1.2. With notation as in 5.1, let r : Y ′′ → Y ′ be a second
smooth morphism so we obtain a commutative diagram

X ′′ ρ //

ψ

��

X ′

φ

��

π // X
f

��
Y ′′ r // Y ′

p // Y .

Let

bcr : r∗φ! ' ψ!ρ
∗, bcp : p∗f! ' φ!π

∗, bcpr : (pr)∗f! ' ψ!(πρ)
∗
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be the base change isomorphisms. Then for F ∈ D
(−)
c (X ) the diagram

r∗p∗f!F
bcp //

'
��

r∗φ!π
∗F

bcr // ψ!ρ
∗π∗F

'
��

(pr)∗f!F
bcpr // ψ!(πρ)

∗F

commutes.

Lemma 5.1.3. Consider a diagram 5.0.iv with p smooth, and let F ∈
D

(−)
c (X ) and G ∈ D

(−)
c (Y). Let

α : (φ!π
∗F)

L
⊗ p∗G→ φ!(π

∗F
L
⊗φ∗p∗G), β : f!F

L
⊗G→ f!(F

L
⊗ f ∗G)

be the isomorphisms given by the projection formula 4.5.2. Then the
diagram

p∗(f!F
L
⊗G)

β //

'
��

p∗f!(F
L
⊗ f ∗G)

bc
��

(p∗f!F)
L
⊗ p∗G

bc
��

φ!π
∗(F

L
⊗ f ∗G)

'
��

(φ!π
∗F)

L
⊗ p∗G

α //
φ!(π

∗F
L
⊗φ∗p∗G)

commutes, where we write bc for the base change isomorphisms.

5.2. Computation of Rf∗ for proper representable morphisms.

Proposition 5.2.1. Let f : X → Y be a proper representable mor-

phism of S–stacks. Then the functor Rf! : D
(−)
c (X ) → D

(−)
c (Y) is

canonically isomorphic to Rf∗ : D
(−)
c (X )→ D

(−)
c (Y).

Remark 5.2.2. Implicit in the proposition is the statement that Rf∗
takes D

(−)
c (X ) to D

(−)
c (Y). This is because the morphism f is repre-

sentable and of finite type. Indeed for any K ∈ D
(−)
c (X ) and Y ∈

Lisse-Et(Y), we have Rf∗K|Y = RfY∗K|XY
, where K|XY

denotes the re-
striction of K to the étale site of XY := X ×Y Y and fY : XY,ét → Yét is
the natural morphism of topos. From 2.1.10 we conclude that for any
j we have

Rjf∗K|Y ' RjfY∗τ≥−nK

for some n ∈ Z. From this the assertion follows.

Proof: The key point is the following lemma.
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Lemma 5.2.3. There is a canonical morphism Rf∗ΩX → ΩY .

Proof: Using 2.3.4 and smooth base change, it suffices to construct
a functorial morphism in the case of algebraic spaces, and to show that

Ext i(Rf∗ΩX ,ΩY) = 0

for i < 0. Now if X and Y are algebraic spaces, we have ΩX = f !ΩY
so we obtain by adjunction and the fact that Rf! = Rf∗ a morphism
Rf∗ΩX → ΩY . For the computation of Ext ’s note that

Rhom(Rf∗ΩX ,ΩY) = f∗Rhom(ΩX , f
!ΩY) = f∗Λ.

�
We define a map Rf∗ ◦DX →DY ◦ f∗ by taking the composite

Rf∗Rhom(−,ΩX )→Rhom(Rf∗(−),Rf∗ΩX )→Rhom(Rf∗(−),ΩY).

To verify that this map is an isomorphism we may work locally on Y .
This reduces the proof to the case when X and Y are algebraic spaces
in which case the result is standard. �

5.3. Base change by an immersion. In this subsection we consider
the case when p is an immersion.

By replacing Y by a suitable open substack, one is reduced to
the case when p is a closed immersion. Then, 5.0.v follows from the
projection formula 4.5.2 as in [6], p.81. Let us recall the argument. Let

A ∈ D
(−)
c (X ). Because p is a closed immersion, one has p∗p∗ = Id. One

has (projection formula 4.5.2 for p)

p∗p
∗Rf!A = p∗Λ

L
⊗Rf!A.

One has then

Rf!A
L
⊗ p∗Λ = Rf!(A

L
⊗ f ∗p∗Λ)

(projection formula 4.5.2 for f). But, we have trivially the base change
for p, namely

f ∗p∗ = π∗φ
∗.

Therefore, one gets

Rf!(A
L
⊗ f ∗p∗Λ) = Rf!(A

L
⊗π∗φ∗Λ)

= Rf!π∗(π
∗A

L
⊗φ∗Λ) projection for π

= p∗φ!π
∗A because π∗ = π! (5.2.1).

Applying p∗ gives the base change isomorphism.
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Remark 5.3.1. Alternatively one can prove 5.0.vi as follows. Start
with A on X a homotopically injective complex, with constructible co-
homology sheaves. Because R0f∗A

i is flasque, it is ΓY ′-acyclic. Then,
p∗p

!Rf∗A can be computed using the complex H0
Y ′(R0f∗A

i). On the
other hand, π∗π

!A can be computed by the complex H0
X ′(Ai) which is a

flasque complex (formal, or [13], V.4.11). Therefore,

p∗Rφ∗π
!A = Rf∗π∗π

!A

is represented by R0f∗H
0
X ′(A). The base change isomorphisms is there-

fore reduced to the formula

R0f∗H
0
X ′ = H0

Y ′(R0f∗).

For later use let us also note the following two propositions.

Proposition 5.3.2. Let p : Y ′ ↪→ Y be an immersion, and let k :
V → Y be a smooth morphism. Let V ′ denote V ×Y Y ′, and let XV
(resp. XV ′) denote the base change of X to V (resp. V ′) so we have a
commutative diagram

XV ′

κ′

}}{{
{{

{{
{{

� � ε //

φV

��

XV

κ}}||
||

||
||

fV

��

X ′ � � π //

φ

��

X

f

��

V ′
k′

}}{{
{{

{{
{{

� � e // V

k}}||
||

||
||

Y ′ �
� p // Y .

Then for any F ∈ D
(−)
c (X ) the diagram

k′∗p∗f!F
bcp //

'
��

k′∗φ!π
∗F

bck′ // φV!κ
′∗π∗F

'
��

e∗k∗f!F
bck // e∗fV!κ

∗F
bce // φV!ε

∗κ∗F

commutes, where bcp and bce (resp. bck and bck′) are the base change
isomorphisms for the immersions p and e (resp. the smooth morphisms
k and k′).

Proof: This follows from the construction of the base change iso-
morphism for an immersion and 5.1.3. �
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Proposition 5.3.3. Let f : X → Y be a finite type morphism of
algebraic S-stacks, and consider a composite

Y ′′ r // Y ′
p // Y ,

with r an immersion, p smooth and representable, and pr an immer-
sion. Let

X ′′ ρ //

ψ

��

X ′

φ

��

π // X
f

��
Y ′′ r // Y ′

p // Y
be the resulting commutative diagram with cartesian squares. Let

bcp : p∗f! ' φ!π
∗

be the base change isomorphism defined in 5.1, and let

bcr : r∗φ! ' ψ!ρ
∗, bcpr : (pr)∗f! ' ψ!(πρ)

∗

be the base change isomorphisms obtained above. Then for F ∈ D
(−)
c (X )

the diagram

(5.3.i) r∗p∗f!F
bcp //

'
��

r∗φ!π
∗F

bcr // ψ!ρ
∗π∗F

'
��

(pr)∗f!F
bcpr // ψ!(πρ)

∗F

commutes.

Proof:
Special Case. Assume first that Y is a quasi-compact algebraic

space in which case Y ′ and Y ′′ are algebraic spaces. It then suffices to
show that the diagram 5.3.i restricted to the étale site of Y ′′ commutes.

We may therefore assume that Y , Y ′, and Y ′′ are quasi-compact
algebraic spaces, which we for the rest of the proof denote by roman
letters Y, Y′, and Y′′. Let

b̂cp : p!f∗F ' φ∗π
!, b̂cr : r!φ∗ ' ψ∗ρ

!, b̂cpr : (pr)!f∗ ' ψ∗(πρ)
!

be the duals of the base change isomorphisms. Then by duality it
suffices to show that for G ∈ D+

c (X ) the diagram in Dc(Y
′′
ét)

(5.3.ii) r!p!f∗G
bbcp //

'
��

r!φ∗π
!G

bbcr // ψ∗ρ!π!G

'
��

(pr)!f∗G
bbcpr // ψ∗(πρ)

!G
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commutes. Let
α : (pr)!f∗G→ (pr)!f∗G

be the automorphism defined by going around the diagram, so we need
to show that α is the identity.

Let X → X be a smooth surjection with associated 0-coskeleton
X· → X . Let X′

· (resp. X′′
· ) be the base change of X· to Y′ (resp. Y′′)

so that we have a commutative diagram of topos

(5.3.iii) X′′
·ét

ρ· //

ψ·
��

X′
·ét

φ·
��

π· // X·ét

f·
��

Y′′
ét

r // Y′
ét

p // Yét

By the classical theory r!, p!, and (pr)! are defined on the whole
derived category D(Yét), and so we get a functor

(pr)!f∗ : D+(X·ét)→ D+(Y′′
ét).

The automorphisms α define an automorphism of the restriction of this
functor to D+

c (X·ét). We extend this automorphism α to an automor-
phism of (pr)!f∗ on all of D+(X·ét).

Let d be the relative dimension of Y′ over Y. Define

π!
· : D(X·ét)→ D(X′

·ét)

to be the functor π∗〈d〉.
There is a functor

H0
X′′
·
(−) : (Λ-modules on X′

·ét)→ (Λ-modules on X′
·ét)

sending a sheaf F· on X′
·ét to the sheaf whose restriction to X′

n is
H0

X′′
n
(Fn). If σ : [m] → [n] is a morphism in the simplicial category,

then the square

X′′
n

//

σ

��

X′
n

σ

��
X′′
m

// X′
m

is cartesian so that there is a canonical morphism σ∗H0
X′′

m
(Fm) →

H0
X′′

n
(σ∗Fm) and hence a natural map

σ∗H0
X′′

m
(Fm)→ H0

X′′
n
(Fn)

giving the H0
X′′

n
(Fn) the structure of a sheaf on X′

·ét. Note also that

H0
X′′
·
(−) is a left exact functor. We define ρ!

· to be the functor

ρ∗RH0
X′′
·
(−) : D+(X′

·ét)→ D+(X′′
·ét).
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Similarly we define

(π·ρ·)
! := (π·ρ·)

∗RH0
X′′
·
(−) : D+(X·ét)→ D+(X′′

·ét).

As in the classical case the functor ρ!
· (resp. (π·ρ·)

!) is right adjoint to
the functor ρ·∗ (resp. (π·ρ·)∗).

There is an isomorphism

(5.3.iv) (π·ρ·)
! → ρ!

·π
!
·

defined as follows. Let F· be a bounded below complex of injectives on
X·, and choose a morphism to a double complex

π∗F·〈d〉 → I··

such that for all i the map π∗Fi → Ii· is an injective resolution. Then
ρ!
·π

!(F·) is represented by the total complex of the bicomplex

J·· := ρ∗· H
0
X′′
·
(I··).

Now for any fixed i and n, the restriction of Ji· to X′′
n computes ρ!

nπ
!
n(F

i
n)

(defined in the classical way), and therefore Hk(Ji·) is zero for k 6= 0.
Moreover, for every n the restriction of Hk(Ji·) to X′′

n is by the classical
theory canonically isomorphic to (πnρn)

∗H0
X′′

n
(Fin). Moreover these iso-

morphisms are compatible so we obtain an isomorphism (π·ρ·)
∗H0

X′′
·
(Fi·) '

H0(Ji·). Let J̃·· denote the bicomplex with

J̃i· = τ≥0J
i·.

We then have a diagram

J·· // J̃··

(π·ρ·)
∗H0

X′′
·
(F·)

OO

where all the morphisms induce quasi-isomorphisms upon passing to
the total complexes. This defines the isomorphism 5.3.iv.

There is a canonical map of functors D+(X·ét)→ D+(Y′
ét)

(5.3.v) b̂cp : p!f·∗ → φ·∗π
!
·

defined by the canonical map p∗f·∗ → φ·∗π
∗
· and the isomorphisms

p! ' p∗〈d〉 (by [13], XVIII.3.2.5) and π!
· = π∗· 〈d〉 (by definition). For

any F ∈ D(X·) the map p∗Rqf·∗F → Rqφ·∗π
∗
· F extends to a morphism
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of spectral sequences

Est
1 = p∗Rsft∗Ft =⇒ p∗Rs+tf·∗F

��
Est

1 = Rsφt∗π
∗
tFt =⇒ Rs+tφ·∗π

∗F,

and hence by the smooth base change theorem [13], XVI.1.2, the map
5.3.v is an isomorphism.

There is also an isomorphism of functors D+(X′
·ét)→ D+(Y′′

ét)

b̂cr : r!φ·∗ → ψ·∗ρ
!
·

obtained by taking derived functors of the natural isomorphism

r∗H0
Y′′(R0φ·∗) ' R0ψ·∗(ρ

∗H0
X′′
·
(0)).

Similarly there is an isomorphism of functors

b̂cpr : (pr)!f·∗ → ψ·∗(π·ρ·)
!.

We therefore obtain for any G ∈ D(X·) a diagram

(5.3.vi) r!p!f·∗G
bbcp //

'
��

r!φ·∗π
!
·G

bbcr // ψ·∗ρ
!
·π

!
·G

'
��

(pr)!f·∗G
bbcpr // ψ·∗(π·ρ·)

!G

and therefore also an automorphism, which we again denote by α, of
the functor

(pr)!f·∗ : D+(X·ét)→ D+(Y′′
ét).

It follows from the construction that the restriction of this automor-
phism to D+

c (X·ét) ' D+
c (X ) agrees with the earlier defined automor-

phisms (as the base change isomorphisms agree).
Since (pr)!f·∗ is the derived functor of the functor

(pr)∗H0
Y′′R0f·∗(−) : (Λ-modules on X·)→ (Λ-modules on Y′′)

it suffices to show that for any sheaf of Λ-modules F on X·, the auto-
morphism of (pr)∗H0

Y′′R0f·∗(F) defined by α is the identity.
For this consider the natural inclusion R0f·∗(F) ↪→ R0f0∗(F0), where

F0 denotes the X0-component of F. The usual base change theorems
applied to the diagram

X′′
0

ρ0 //

ψ0

��

X′
0

π0 //

ψ0

��

X0

f0
��

Y′′ r // Y′ p // Y
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give a diagram

(5.3.vii) r!p!f0∗F0

bbcp //
'
��

r!φ0∗π
!
0F0

bbcr // ψ0∗ρ
!
0π

!
0F0

'
��

(pr)!f0∗F0

bbcpr // ψ0∗(π0ρ0)
!F0

which commutes by the classical theory. Moreover, the restriction
maps define a morphism from the diagram 5.3.vi for F to the dia-
gram 5.3.vii. In particular, the automorphism of (pr)∗H0

Y′′R0f·∗(F)
defined by α is equal to the restriction of the identity automorphism
on (pr)∗H0

Y′′R0f0∗(F0).
General case. Let us chose a presentation Y→Y and let Y· be the

0-cosqueleton. It is a simplicial algebraic space. We get by pull-back a
commutative diagram from the diagram 5.3.iii

(5.3.viii) X′′
··ét

ρ·· //

ψ··
��

X′
··ét

φ··
��

π·· // X··ét

f··
��

Y′′
·ét

r· // Y′
·ét

p· // Y·ét

One defines the bisimplicial version of π, ρ as above (π!
·· = π∗〈d〉)

and ρ·· = ρ∗··RH0
X′′
··
). As above (5.3.vi), we get an automorphism α· of

the functor (p·r·)
!f··. The theorem to be proved is the equality α· =

Id. As above, one observes that α· is the derived morphism of the
corresponding morphism α0

· of (p·r·)
∗H0

Y′′
·
R0f··∗. But proving that the

latter is the identity is now a local question on Y′′
· . One can therefore

assume that Y is an algebraic space, which has been done before. �

Proposition 5.3.4. Let f : X → Y be a finite type morphism of
algebraic S-stacks, and consider a composite

Y ′′ r // Y ′
p // Y ,

with r and p immersions. Let

X ′′ ρ //

ψ
��

X ′

φ
��

π // X
f

��
Y ′′ r // Y ′

p // Y

be the resulting commutative diagram with cartesian squares. Let

bcp : p∗f! ' φ!π
∗, bcr : r∗φ! ' ψ!ρ

∗, bcpr : (pr)∗f! ' ψ!(πρ)
∗



SIX OPERATIONS I 51

be the base change isomorphisms. Then for F ∈ D
(−)
c (X ) the diagram

r∗p∗f!F
bcp //

'
��

r∗φ!π
∗F

bcr // ψ!ρ
∗π∗F

'
��

(pr)∗f!F
bcpr // ψ!(πρ)

∗F

commutes.

Proof: This follows from a similar argument to the one used in
the proof of 5.3.3 reducing to the case of schemes. �

5.4. Base change by a universal homeomorphism. If p is a uni-
versal homeomorphism, then p! = p∗ and π! = π∗. Thus in this case
5.0.vi is equivalent to an isomorphism p∗Rf∗ → Rφ∗π

∗. We define such
a morphism by taking the usual base change morphism (adjunction).

Let A ∈ Dc(X ). Using a hypercover of X as in 5.1, one sees that
to prove that the map p∗Rf∗A→ Rφ∗π

∗A is an isomorphism it suffices
to consider the case when X is a scheme. Furthermore, by the smooth
base change formula already shown, it suffices to prove that this map is
an isomorphism after making a smooth base change Y → Y . We may
therefore assume that Y is also a scheme in which case the result fol-
lows from the classical corresponding result for étale topology (see [12],
IV.4.10).

5.5. Base change for smoothable morphisms.

Definition 5.5.1. A morphism p : Y ′ → Y is smoothable if there
exists a factorization of p

(5.5.i) Y ′ �
� i // V

q // Y ,

where i is an immersion and q is a smooth representable morphism.

Example 5.5.2. Let Y′ → Y be a locally of finite type morphism
with Y′ a scheme. Then for any geometric point ȳ′ → Y′ there is an
étale neighborhood W′ of ȳ′ such that the composite morphism W′ →
Y′ → Y is smoothable. For this choose a smooth morphism V →
Y with V an affine scheme and with ȳ′ ×Y V nonempty. Then the
morphism V×Y Y′ → Y′ is smooth, and therefore there exists an étale
neighborhood W′ → Y′ with W′ affine and a lifting W′ → V of the
morphism W′ → V. Since the morphism W′ → V is of finite type
there exists an immersion W′ ↪→ Ar

V over V. We therefore obtain a
factorization

W′ � � // Ar
V

// Y
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of W′ → Y.

Let p : Y ′ → Y be a smoothable morphism, and choose a factor-
ization 5.5.i. We then obtain a commutative diagram

X ′ ι //

φ

��

Z
ψ

��

ε // X
f

��
Y ′ i // V

q // Y ,

with cartesian squares. We then obtain for F ∈ Dc(X ) an isomorphism

(5.5.ii) p∗f!F ' φ!π
∗F

from the composite

p∗f!F ' i∗q∗f!F

' i∗ψ!ε
∗F (q∗f! = ψ!ε

∗ by 5.1)

' φ!ι
∗ε∗F (i∗ψ! = φ!ι

∗ by 5.3)

' φ!π
∗F.

Lemma 5.5.3. The isomorphism 5.5.ii is independent of the choice of
the factorization 5.5.i of p.

Proof: Consider two factorizations

(5.5.iii) Y ′ �
� ij // Vi

qj // Y j = 1, 2,

with the qj smooth and representable.
Let V denote the fiber product V1 ×Y V2 and let i : Y ′ → V denote

the map i1 × i2. Since the morphisms Vj → Y are representable, the
map i is again an immersion. Consideration of the diagrams

V

prj�� ��?
??

??
??

?

Y ′
/ �

i
>>~~~~~~~~

� � ij // Vj // Y

then further reduces the proof to showing that two factorization 5.5.iii
define the same base change isomorphism under the further assumption
that there exists a smooth morphism z : V1 → V2 such that the diagram

V1

z

��

q1

��?
??

??
??

?

Y ′
/ �

i1
>>~~~~~~~~

� � i2 // V2

q2 // Y
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commutes. Let Xi denote X ×Y Vi so we have a commutative diagram

X ′ � � ι1 //

ι2

!!

φ

��

X1

ε2

!!

ψ1

��

ζ // X2

ψ2

��

ε2 // X
f

��
Y ′

i2

==
� � i1 // V1

z //

q1

==V2

q2 // Y .

It then suffices to show that the following diagram commutes for F ∈
D

(−)
c (X )

i∗2q
∗
2f!F

bcq2 //

'
��

i∗2ψ2!ε
∗
2F

bci2

��

' // i∗1z
∗ψ2!ε

∗
2F

bcz
��

i∗1q
∗
1f!F

bcq1 // i∗1ψ1!ζ
∗ε∗2F

bci1
��

φ!π
∗F,

where for a morphism ? which is either an immersion or smooth we
write bc? for the base change isomorphism defined in either 5.1 or 5.3.
This follows from 5.1.2 which shows that the inside pentagon com-
mutes, and 5.3.3 which shows that the diagram

i∗2ψ2!ε
∗
2F

'
��

bci2 // φ!π
∗F

i∗1z
∗ψ2!ε

∗
2F

bcz // i∗1ψ1!ζ
∗ε∗2F

bci1

OO

commutes. �

Proposition 5.5.4. Consider a diagram of algebraic stacks

Y ′′ h // Y ′
p // Y

with h, p, and ph smoothable and representable, and let

X ′′ η //

ψ

��

X ′

φ

��

π // X
f

��
Y ′′ h // Y ′

p // Y
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be the resulting commutative diagram with cartesian squares. Let

bcp : p∗f! → φ!π
∗, bch : h∗φ! → ψ!η

∗, bcph : (ph)∗f! → ψ!(πη)
∗

be the base change isomorphisms. Then for any F ∈ D
(−)
c (X ) the dia-

gram

h∗p∗f!F
bcp //

'
��

h∗φ!π
∗F

bch // ψ!η
∗π∗F

'
��

(ph)∗f!F
bcph // ψ!(πη)

∗F

commutes.

Remark 5.5.5. In fact the proof will show that if p and ph are smooth-
able then h is automatically smoothable.

Proof: Note first that there exists a commutative diagram

(5.5.iv) V
k
��

W
. �

j
>>||||||||

s

��

V ′

t
��

Y ′′ h //
. �

w
>>||||||||
Y ′

p //
. �

i
>>}}}}}}}}
Y ,

with i, w, j immersions and s, k, t smooth and representable and the
square

W
s
��

j // V
k
��

Y ′ i // V
cartesian. Indeed by assumption there exists factorizations of p and ph
respectively

Y ′ i // V ′ t // Y
and

Y ′′
g // V ′′ m // Y

with t and m smooth and representable and g and i closed immersions.
Now take V to be V ′ ×Y V ′′, let k be the projection, and define W to
be the fiber product Y ′×i,V ′ V . Define w to be the natural map defined
by g and ih.

Note that this construction gives a diagram with i and j closed
immersions. After further replacing V by an open substack through
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which jw factors as a closed immersion, we may also assume that w is
a closed immersion.

Base changing the diagram 5.5.iv along f : X → Y we obtain a
commutative diagram

XV
κ

��
XW

ζ

��

. �

γ
<<zzzzzzzz
XV ′

τ

��
X ′′ η //

. �

ε
==zzzzzzzz
X ′

- 


ι
<<yyyyyyyy

π // X

over 5.5.iv. Let

fV ′ : XV ′ → V ′, fV : XV → V , fW : XW →W

be the projections. We then obtain a diagram

I

w∗s∗i∗t∗f!F

'
��

bct //

bcp

))
w∗s∗i∗fV ′!τ

∗F

'
��

bci // w∗s∗φ!ι
∗τ ∗F

bcs
��

bch

uu

w∗j∗k∗t∗f!F

bctk
��

IV
w∗j∗k∗fV ′!τ

∗F

bck
��

III
w∗fW!ζ

∗ι∗τ ∗F

bcw
��

II

w∗j∗fV!κ
∗τ ∗F

bcjw

FF
' // w∗j∗fV!κ

∗τ ∗F

bcj
��

ψ!w
∗ζ∗ι∗τ ∗F

w∗fW!γ
∗κ∗τ ∗F

'

<<yyyyyyyyyyyyyyyyyyyyy
V

The small inside diagrams I and II commute by the definition of bcp
and bch, and the composite bcjw ◦ bctk is by definition bcph. The inside
diagram labeled III commutes by 5.3.2. This reduces the proof to the
case when both p and h are smooth (resp. closed immersions) as this
case implies that the inside diagram IV (resp. V) commutes. In this
case the result is 5.1.2 (resp. 5.3.4). �

Corollary 5.5.6. For any commutative diagram 5.0.iv of algebraic

stacks, F ∈ D
(−)
c (X ) and q ∈ Z there is a canonical isomorphism of
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sheaves on Y ′
p∗Rqf!(F) ' Rqφ!π

∗F.

Proof: By 5.5.2 it suffices to construct for every smooth morphism
Y′ → Y ′ such that the composite Y′ → Y ′ → Y is smoothable an
isomorphism

σY′ : p∗Rqf!F|Y′
ét
' Rqφ!π

∗F|Y′
ét

such that if h : Y′′ → Y′ is a morphism in Lis-Et(Y ′) with the composite
Y′′ → Y ′ → Y smoothable, then the diagram of sheaves on Y′′

ét

(5.5.v) h∗(p∗Rqf!F|Y′
ét
)

σY′ //

'
��

h∗(Rqφ!π
∗F|Y′

ét
)

'
��

p∗Rqf!F|Y′′
ét

σY′′ // Rqφ!π
∗F|Y′′

ét

commutes. For this take σY′ to be the map induced by the base change
isomorphism for the smoothable morphisms Y′ → Y . The commuta-
tivity 5.5.v follows from 5.5.4. �

5.6. Kunneth formula. Throughout this section we assume that S is
regular so that ΩS ' Λ.

Let Y1 and Y2 be S-stacks locally of finite type, and set Y :=
Y1 × Y2. Let pi : Y → Yi (i = 1, 2) be the projection and for two

complexes Li ∈ D(−)
c (Yi) let L1

L
⊗SL2 ∈ D(−)

c (Y) denote p∗1L1

L
⊗Λp

∗
2L2.

Lemma 5.6.1. There is a natural isomorphism ΩY ' ΩY1

L
⊗SΩY2.

Proof: For any smooth morphisms Ui → Yi (i = 1, 2) with Ui a
scheme, there is a canonical isomorphism

(5.6.i) ΩY |U1×SU2 ' ΩY1|U1

L
⊗SΩY2|U2 ,

and this isomorphism is functorial with respect to morphisms Vi → Ui

(in the case when dim(S) ≤ 1 this is [14], III.1.7.6). It follows that the

sheaf ΩY1

L
⊗SΩY2 also satisfies the Ext–condition (2.3.3), and hence to

give an isomorphism as in the Lemma it suffices to give an isomorphism
in the derived category of U1×S U2 for all smooth morphisms Ui → Yi.
�

Lemma 5.6.2. Let (T ,Λ) be a ringed topos. Then for any

P1,P2,M1,M2 ∈ D(T ,Λ),

there is a canonical morphism

Rhom(P1,M1)
L
⊗Rhom(P2,M2)→ Rhom(P1

L
⊗P2,M1

L
⊗M2).
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Proof: It suffices to give a morphism

Rhom(P1,M1)
L
⊗Rhom(P2,M2)

L
⊗P1

L
⊗P2 → M1

L
⊗M2.

This we get by tensoring the two evaluation morphisms

Rhom(Pi,Mi)
L
⊗Pi → Mi.

�

Lemma 5.6.3. Let A,B ∈ D(X ).Then we have

A
L
⊗B = hocolim τ≤nA

L
⊗ τ≤nB.

Proof: By 4.3.2, we have A ' hocolim nτ≤nA, and therefore we
have a distinguished triangle

⊕τ≤nA
1−shift−−−−→ ⊕τ≤nA→A

Tensoring this triangle with B we get a distinguished triangle

⊕τ≤nA
L
⊗B

1−shift−−−−→ ⊕τ≤nA
L
⊗B→A

L
⊗B

proving

hocolim τ≤nA
L
⊗B = A

L
⊗B.

Applying this process again we find

hocolim τ≤nA
L
⊗ τ≤mB = A

L
⊗B.

Because the diagonal is cofinal in N×N, the lemma follows. �

Proposition 5.6.4. For Li ∈ D(−)
c (Yi) (i = 1, 2), there is a canonical

isomorphism

(5.6.ii) DY1(L1)
L
⊗SDY2(L2) ' DY(L1

L
⊗SL2).

Proof: By 5.6.1 and 5.6.2 there is a canonical morphism

(5.6.iii) DY1(L1)
L
⊗SDY2(L2)→ DY(L1

L
⊗SL2).

To verify that this map is an isomorphism, it suffices to show that for
every j ∈ Z the map

(5.6.iv) Hj(DY1(L1)
L
⊗SDY2(L2))→ Hj(DY(L1

L
⊗SL2)).

Because
L
⊗ commutes with homotopy colimits (5.6.3), we deduce from

D(A) = hocolim D(τ≥mA) (use 4.3.2) that to prove this we may replace
Li by τ≥mLi for m sufficiently negative, and therefore it suffices to con-
sider the case when Li ∈ Db

c(Yi). Furthermore, we may work locally in
the smooth topology on Y1 and Y2, and therefore it suffices to consider
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the case when the stacks Yi are schemes. In this case the result is [13],
XVII, 5.4.3. �

Now consider finite type morphisms of S–stacks fi : Xi → Yi (i =
1, 2), and let f : X := X1 ×S X2 → Y := Y1 ×S Y2 be the morphism

obtained by taking fiber products. Let Li ∈ D(−)
c (Xi).

Theorem 5.6.5. There is a canonical isomorphism in Dc(Y)

(5.6.v) Rf!(L1

L
⊗SL2)→ Rf1!(L1)

L
⊗SRf2!(L2).

Proof: We define the morphism 5.6.v as the composite

Rf!(L1

L
⊗SL2)

'−−−→ DY(f∗DX (L1

L
⊗SL2))

'−−−→ DY(f∗(DX1(L1)
L
⊗SDX2(L2)))

−−−→ DY(f1∗DX1(L1)
L
⊗S(f2∗DX2(L2)))

'−−−→ DY1(f1∗DX1(L1))
L
⊗SDY2(f2∗DX2(L2))

'−−−→ Rf1!(L1)
L
⊗SRf2!(L2).

That this map is an isomorphism follows from a standard reduction to
the case of schemes using hypercovers of Xi, biduality, and the spectral
sequences 4.9.1. �
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[13] A. Grothendieck and al.- Théorie des topos et cohomologie étale des schémas.,
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