1. Fields

A field is a set \(k \) together with two operations
\[+ : k \times k \to k, \quad \cdot : k \times k \to k. \]
For \((a, b) \in k \times k \) we usually write \(a + b \) (resp. \(a \cdot b \) or just \(ab \)) for the image of the pair \((a, b) \) under the operation \(+ \) (resp. \(\cdot \)). These two operations are required to satisfy the following:

(F1) For any \(a, b \in k \) we have
\[a + b = b + a, \quad ab = ba. \]

(F2) There exists an element \(0 \in k \) (resp. \(1 \in k \)) such that for any \(a \in k \) we have
\[a + 0 = 0 + a = a, \quad 1 \cdot a = a \cdot 1 = a. \]
Note that the elements 0 and 1 are unique.

(F3) For any \(a \in k \) there exists a unique element \(a' \in k \)
\[a + a' = 0. \]
We usually write \(-a \) for the element \(a' \).

(F4) For any \(a \in k \) which is not equal to 0, there exists a unique element \(b \in k \) such that
\[ab = 1. \]
We usually write \(a^{-1} \) for this element.

(F5) For any \(a, b, c \in k \) we have
\[a + (b + c) = (a + b) + c, \quad a(bc) = (ab)c, \quad a(b + c) = ab + ac. \]

Example 1.1. Some examples of fields are \(\mathbb{Q}, \mathbb{R}, \mathbb{C} \). If \(p \) is a prime then the congruence classes modulo \(p \) form a field under addition and multiplication of congruence classes. This field is usually denoted \(\mathbb{F}_p \) (sometimes also written \(\mathbb{Z}/(p) \)).

We can talk about polynomials \(F \) with coefficients in a field \(k \). Such a polynomial (in variables \(X_1, \ldots, X_n \) say) is simply a finite sum of monomial terms
\[a_{i_1 \ldots i_n} X_1^{i_1} \cdots X_n^{i_n}, \]
with each \(i_j \geq 0 \).

Given a vector \((s_1, \ldots, s_n) \in k^n \) and a polynomial
\[F = \sum_{i} a_i X_1^{i_1} \cdots X_n^{i_n} \]
we define
\[F(s_1, \ldots, s_n) := \sum_i a_i s_1^{i_1} \cdots s_n^{i_n} \in k. \]

A polynomial \(F \) in variables \(X_1, \ldots, X_n \) is called **homogeneous of degree** \(r \) if for each monomial \(X_1^{i_1} \cdots X_n^{i_n} \) occurring in \(F \) we have
\[i_1 + \cdots + i_n = r. \]

2. Projective space

Let \(k \) be a field, and let \(n \geq 0 \) be an integer. Define \(n \)-dimensional projective space \(\mathbb{P}^n(k) \) over \(k \) as follows. The set \(\mathbb{P}^n(k) \) is the set of equivalence classes of vectors
\[(a_0, \ldots, a_n)\]
of elements \(a_i \in k \), such at least one \(a_i \) is nonzero. Two vectors \((a_0, \ldots, a_n) \) and \((a'_0, \ldots, a'_n) \) are declared equivalent if there exists a nonzero element \(\lambda \in k \) such that
\[a_i = \lambda a'_i \]
for all \(i \). We usually write
\[[a_0 : \cdots : a_n] \]
for the equivalence class of the vector \((a_0, \ldots, a_n)\).

We write \(\mathbb{A}^n(k) \subseteq \mathbb{P}^n(k) \) for the subset of points \([a_0 : \cdots : a_n]\) with \(a_n \neq 0 \). Note that we have a bijection
\[k^n \rightarrow \mathbb{A}^n(k), \quad (b_0, \ldots, b_{n-1}) \mapsto [b_0 : \cdots : b_{n-1} : 1]. \]

If \(F \) is a homogeneous polynomial of degree \(r \) in variables \(X_0, \ldots, X_n \) then for any \(\lambda \in k \) and vector \((a_0, \ldots, a_n)\) we have
\[F(\lambda a_0, \ldots, \lambda a_n) = \lambda^n F(a_0, \ldots, a_n). \]
It therefore makes sense to say that \(F \) vanishes on a point \([a_0 : \cdots : a_n]\) of \(\mathbb{P}^n(k) \). If \(F_1, \ldots, F_t \) are homogeneous polynomials we define
\[V(F_1, \ldots, F_t) \subseteq \mathbb{P}^n(k) \]
to be the set
\[V(F_1, \ldots, F_t) = \{[a_0 : \cdots : a_n]|F_j([a_0 : \cdots : a_n]) = 0 \text{ for all } j\}. \]

Example 2.1. Consider the subset
\[V(X^2 + Y^2 - Z^2) \subseteq \mathbb{P}^n(k). \]
The intersection of \(V(X^2 + Y^2 - Z^2) \cap \mathbb{A}^2(k) = k^2 \) is the set of solutions to the equation
\[X^2 + Y^2 = 1. \]
The points in \(\mathbb{P}^2(k) - \mathbb{A}^2(k) \) is the set
\[V(X^2 + Y^2) \subseteq \mathbb{P}^1(k), \]
where \(\mathbb{P}^1(k) \) is embedded in \(\mathbb{P}^2(k) \) via the map
\[\mathbb{P}^1(k) \rightarrow \mathbb{P}^2(k), \quad [a : b] \mapsto [a : b : 0]. \]
3. Homogenizing equations

We will often consider the following situation. Let
\[f = \sum_{i,j} a_{i,j} X^i Y^j \]
be a polynomial in two variables defining a subset
\[\{(a, b) \in k^2 \mid f(a, b) = 0\} \subset k^2. \]
We can extend this zero set to all of \(\mathbb{P}^2(k) \) as follows. Let \(r \) be the maximum of the integers \(i + j \) for \(X^i Y^j \) a nonzero monomial occurring in \(f \). Then define
\[F := \sum_{i,j} a_{i,j} X^i Y^j Z^{r-i-j}, \]
a homogeneous polynomial in three variables. The resulting zero set
\[V(F) \subset \mathbb{P}^2(k) \]
then has the property that \(V(F) \cap \mathbb{A}^2(k) \) is the original set of zeros of \(f \). The polynomial \(F \) is called the homogenization of \(f \).

More generally one can consider polynomials in more variables and zero sets of several polynomials at a time.

Example 3.1. If
\[f = Y^2 - X^3 - aX - b \]
for some constants \(a, b \in k \) then the homogenization of \(f \) is the polynomial
\[F = Y^2 Z - X^3 - aXZ^2 - bZ^3. \]
Note that the points at infinity of \(V(F) \) consist of triples \([\alpha : \beta : 0]\) for which
\[-\alpha^3 = 0. \]
This implies that \(\alpha = 0 \) so the only point at infinity is \([0 : 1 : 0]\). This is an important example, and is an example of an elliptic curve.

4. Exercises

Exercise 1. For which integers \(m \) is the set of congruence classes modulo \(m \) a field (under addition and scalar multiplication of congruence classes)?

Exercise 2. Let \(k \) be a field. Show that there is a natural decomposition
\[\mathbb{P}^n(k) = k^n \cup k^{n-1} \cup \cdots \cup k \cup \{\ast\}. \]
In particular, show that
\[\mathbb{P}^n(\mathbb{F}_p) \]
consists of
\[p^n + p^{n-1} + \cdots + p + 1 = (p^{n+1} - 1)/(p - 1) \]
elements.
Exercise 3. Exhibit a natural bijection between $\mathbb{P}^n(\mathbb{R})$ and the set of lines in \mathbb{R}^{n+1} which pass through $(0, \ldots, 0) \in \mathbb{R}^{n+1}$.