MATH 748: HOMEWORK 9

- (1) Find $\mu(K)$ for each quadratic number field K.
- (2) Prove, without using Dirichlet's unit Theorem, that an imaginary quadratic number field has at most finitely many units.
- (3) The continued fraction expansion for $\alpha \in \mathbb{R}$ is the writing of α as

$$a_0 + \frac{1}{a_1 + \frac{1}{\dots}}$$

with each $a_i \in \mathbb{Z}$. To find the a_i , first let $[\alpha]$ be the greatest integer less than or equal to α , so that $a_0 = [\alpha]$. Let β be the reciprocal of the fractional part $\alpha - [\alpha]$, so that from above we have $\beta = a_1 + (1/(a_2 + \cdots))$. Thus $a_1 = [\beta]$. Continue in this manner to obtain the other a_i . If we truncate the expression above at the nth step, we obtain a rational number p_n/q_n . For instance, $p_0/q_0 = a_0/1$, $p_1/q_1 = a_0 + 1/a_1 = (a_0a_1 + 1)/a_1$. The numbers p_n and q_n are called the convergents of α , and are given by the Fibonacci-like recurrences

$$p_{n+1} = a_{n+1}p_n + p_{n-1}$$
 $q_{n+1} = a_{n+1}q_n + q_{n-1}$

with initial values p_0, p_1, q_0, q_1 as given above. The rational numbers p_n/q_n give successively better approximations of α . Now let $\alpha = \sqrt{d}$, where d > 0 is squarefree and $d \equiv 2, 3 \pmod{4}$. The numbers p_n/q_n are nearly \sqrt{d} , meaning that $p_n^2/q_n^2 - d$ is small. Thus it should not be surprising that $p_n^2 - dq_n^2$ is a small integer. More surprisingly, there is the following result first proved by Lagrange: let $a^2 - db^2 = \pm 1$ for some $a, b \in \mathbb{Z}$. Then $a/b = p_n/q_n$ for some n. Since both p and q strictly increase with n, it follows that the smallest n with $p_n^2 - dq_n^2 = \pm 1$ gives us a fundamental unit in $\mathbb{Q}(\sqrt{d})$ (i.e. the fundamental unit that is > 1 is $p_n + q_n \sqrt{d}$). Thus we have an algorithm for finding a fundamental unit. See the text for further information about which convergent will actually give the fundamental unit. Using this, find the fundamental unit of the ring of integers in $\mathbb{Q}(\sqrt{11}), \mathbb{Q}(\sqrt{19})$, and $\mathbb{Q}(\sqrt{22})$. Don't use a computer, except to perform basic arithmetic to find the appropriate continued fraction expansions and to compute $p_n^2 - dq_n^2$.

- (4) Milne 5-1
- (5) Let $K = \mathbb{Q}(\sqrt{26})$ and let $\epsilon = 5 + \sqrt{26}$. Show

$$(2) = (2, \epsilon + 1)^2 \quad (5) = (5, \epsilon + 1)(5, \epsilon - 1) \quad (\epsilon + 1) = (2, \epsilon + 1)(5, \epsilon + 1).$$

1

Show that K has class number 2. Verify that ϵ is the fundamental unit. Deduce that all solutions in integers x, y to the equation $x^2 - 26y^2 = \pm 10$ are given by $x + \sqrt{26}y = \pm \epsilon^n (\epsilon \pm 1)$ for $n \in \mathbb{Z}$.