MATH 748: HOMEWORK 7

(1) Find the class numbers of $\mathbb{Q}(\sqrt{-163}), \mathbb{Q}(\sqrt{-10})$, and $\mathbb{Q}(\sqrt{14})$. Make sure to prove any claims that ideals are non principal. (Hint: you can use Dedekind's theorem to help tell you how primes factor in \mathcal{O}_{K}.)
(2) Milne 4-4
(3) Milne 4-5
(4) Milne 4-6
(5) Use sage to compute the e_{i}, f_{i} of the primes occurring in the factorization of $p \mathcal{O}_{K}$ for the first 200 primes p in \mathbb{Z} for 4 different quadratic fields $K, 4$ different Galois cubic fields K, and 4 different non-Galois cubic fields K. For each K, make a table tabulating how many of each splitting type (i.e. $\left(e_{i}, f_{i}\right)$ data) occur. Notice anything about how often each possibility occurs? What is needed to prove something about how often each possibility occurs in the quadratic case?

