MATH 748: HOMEWORK 6

(1) Milne 4-2
(2) Milne 4-3
(3) Let K be a quadratic field and I an ideal of \mathcal{O}_{K}. Show that $I=(a, \beta)$ for some $a \in \mathbb{Z}$ and $\beta \in \mathcal{O}_{K}$. Show that $(a, \beta)(a, \bar{\beta})$ is principal, where $\bar{\beta}$ is the conjugate of β.
(4) For an ideal in \mathcal{O}_{K}, let $\phi(I)=\left|\left(\mathcal{O}_{K} / I\right)^{*}\right|$. Show that $\phi(I)=\operatorname{Nm}(I) \prod_{\wp \mid I}\left(1-\frac{1}{\operatorname{Nm} \wp}\right)$, where the product is over prime ideals of \mathcal{O}_{K}.
(5) In class we showed that a prime ramifies in \mathcal{O}_{K} if and only if it divides the discriminant. Use Dedekind's criterion to give another proof of this fact when $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$ (e.g. when K is quadratic).

