MATH 748: HOMEWORK 6

- (1) Milne 4-2
- (2) Milne 4-3
- (3) Let K be a quadratic field and I an ideal of \mathcal{O}_K . Show that $I = (a, \beta)$ for some $a \in \mathbb{Z}$ and $\beta \in \mathcal{O}_K$. Show that $(a, \beta)(a, \overline{\beta})$ is principal, where $\overline{\beta}$ is the conjugate of β .
- (4) For an ideal in \mathcal{O}_K , let $\phi(I) = |(\mathcal{O}_K/I)^*|$. Show that $\phi(I) = \operatorname{Nm}(I) \prod_{\wp \mid I} (1 \frac{1}{\operatorname{Nm}\wp})$, where the product is over prime ideals of \mathcal{O}_K .
- (5) In class we showed that a prime ramifies in \mathcal{O}_K if and only if it divides the discriminant. Use Dedekind's criterion to give another proof of this fact when $\mathcal{O}_K = \mathbb{Z}[\alpha]$ (e.g. when K is quadratic).