MATH 748: HOMEWORK 5 (FINAL)

(1) Let $d \in \mathbb{Z}$ be square-free and p a prime number not dividing $2 d$. Let $K=\mathbb{Q}(\sqrt{d})$. Show that the ideal $p \mathcal{O}_{K}$ is prime if and only if the congruence $x^{2} \equiv d(\bmod p)$ has no solutions.
(2) Milne 3-3
(3) Give an example of a domain B, a non-zero prime ideal \wp in B, and a subring A of B such that $\wp \cap A=0$. (Note that in class in our proof for extensions of Dedekind domains, we used integrality of B over A to show that this can't happen in that case.)
(4) Let $K=\mathbb{Q}(\sqrt{-m})$ where $m>0$ is the product of distinct primes p_{1}, \ldots, p_{k} and $m \not \equiv 3(\bmod 4)$. Show that $\left(p_{i}\right)=\wp_{i}^{2}$ where $\wp_{i}=\left(p_{i}, \sqrt{-m}\right)$. Show that just two of the ideals $\prod_{i} \wp_{i}^{r_{i}}$ with $r_{i} \in\{0,1\}$ are principal. Deduce that the class group $C l_{K}$ contains a subgroup isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{k-1}$.
(5) Let $K=\mathbb{Q}(\theta)$ where θ is a root of $X^{3}-4 X+7$. Determine (by hand) the ring of integers and discriminant of K. You may look up and use (if you quote) the formula for the discriminant of a cubic polynomial. Determine (by hand) the factorization into prime ideals of $p \mathcal{O}_{K}$ for $p=2,3,5,7,11$.
(6) Use sage to compute the ring of integers and discriminant of $K=\mathbb{Q}(\alpha)$ where α is a root of $f(X)=X^{3}+X^{2}-2 X+8$. Which primes ramify? Which primes of \mathbb{Z} can you determine the factorization of in \mathcal{O}_{K} by looking at how $f(X)$ factors mod p ? For the primes for which you can not do the above, use sage to compute their factorization.

