MATH 748: HOMEWORK 4 (FINAL)

(1) Milne 3-4 (note relation to HW $1 \# 2$, but I do not recommend you show this ring is isomorphic to that one)
(2) Let I be a non-zero ideal of a Dedkind domain A. Show that in every ideal class of $C l(A)$ there is an integral ideal relatively prime to I.
(3) Show that every ideal I in a Dedekind domain A can be generated by two elements.
(4) Let $K=\mathbb{Q}(\sqrt{35})$ and $\omega=5+\sqrt{35}$. Verify the ideal equations $(2)=(2, \omega)^{2}$ and $(5)=(5, \omega)^{2}$ and $(\omega)=(2, \omega)(5, \omega)$. Show that the class group of K contains an element of order 2. (Make sure to verify that ideals are non-principal if you claim it.)
(5) Use sage to compute the class groups of the real quadratic fields $\mathbb{Q}(\sqrt{D})$ for squarefree $2 \leq D \leq 50$. Make a table of the frequencies of each group.
(6) Let p be an odd prime and $K=\mathbb{Q}\left(\zeta_{p}\right)$ where ζ_{p} is a primitive p th root of unity. Determine $[K: \mathbb{Q}]$. Calculate $N m_{K / \mathbb{Q}}(\pi)$ and $\operatorname{Tr}_{K / \mathbb{Q}}(\pi)$ where $\pi=1-\zeta_{p}$.
(a) By considering traces $\operatorname{Tr}_{K / \mathbb{Q}}\left(\zeta_{p}^{j} \alpha\right)$ show that $\mathbb{Z}\left[\zeta_{p}\right] \subset \mathcal{O}_{K} \subset \frac{1}{p} \mathbb{Z}\left[\zeta_{p}\right]$.
(b) Show that $\frac{1-\zeta_{p}^{r}}{1-\zeta_{p}^{s}}$ is a unit in \mathcal{O}_{K} for all $r, s \in \mathbb{Z}$ coprime to p, and that $\pi^{p-1}=u p$ where u is a unit in \mathcal{O}_{K}.
(c) Prove that the natural map $\mathbb{Z} \rightarrow \mathcal{O}_{K} /(\pi)$ is surjective. Deduce that for any $\alpha \in \mathcal{O}_{K}$ and $m \geq 1$ there exist $a_{0}, a_{1}, \ldots, a_{m-1} \in \mathbb{Z}$ such that

$$
\alpha \equiv a_{0}+a_{1} \pi+\cdots+a_{m-1} \pi^{m-1} \quad\left(\bmod \pi^{m} \mathcal{O}_{K}\right)
$$

(d) Deduce that $\mathcal{O}_{K}=\mathbb{Z}\left[\zeta_{p}\right]$.

