MATH 748: HOMEWORK 2 (FINAL)

(1) Milne 2-1, 2-3, 2-6 (added!)
(2) Let $K \subset L \subset M$ be separable extensions of fields. Show that $\operatorname{Tr}_{M / K}=\operatorname{Tr}_{L / K} \circ \operatorname{Tr}_{M / L}$ (a precisely similar argument shows that $\mathrm{Nm}_{M / K}=\mathrm{Nm}_{L / K} \circ \mathrm{Nm}_{M / L}$, but you only need to do the trace version).
(3) Let $d>1$ be an integer. Show that the only units in the ring $\mathbb{Z}[\sqrt{-d}]$ are ± 1.
(4) Let $K=\mathbb{Q}(\alpha)$ where α is a root of $f(x)=x^{5}+2 x^{4}+5 x^{3}+3 x^{2}+4$. Use sage to check that this polynomial is irreducible. Use sage to compute $\operatorname{Disc}\left(\mathcal{O}_{K} / \mathbb{Z}\right)$.
(5) Find a domain A and an element b in some domain B containing A such that b is integral over A but the minimal monic polynomial of B over the fraction field of A does not have coefficients in A.
(6) For $K=\mathbb{Q}(\sqrt{3})$ and $K=\mathbb{Q}(\sqrt{5})$, state the integral basis for \mathcal{O}_{K} you found in the last homework set and find a dual basis with respect to the trace form for it.

