MATH 748: HOMEWORK 1 (FINAL)

(1) Milne 2-2, 2-4
(2) In the polynomial ring $A=\mathbb{Q}[x, y]$, consider the ideal $\wp=\left(x^{2}-y^{3}\right)$. Show that \wp is a prime ideal, but that A / \wp is not integrally closed.
(3) Find the minimal polynomials over \mathbb{Q} of $(1+i) \sqrt{3}$ and $i+\sqrt{3}$.
(4) Is $\frac{3+2 \sqrt{6}}{1-\sqrt{6}}$ an algebraic integer? What about $\frac{\sqrt{5}}{\sqrt{2}} ? \frac{\sqrt{3}+\sqrt{7}}{2} ? \frac{1+\sqrt[3]{10}+\sqrt[3]{100}}{3}$?
(5) Show that the quadratic (i.e. degree 2) extensions of \mathbb{Q} are exactly $\mathbb{Q}(\sqrt{D})$ for square-free integers $D \neq 0,1$,
(6) For every square-free integer $D \neq 0,1$, find the ring of algebraic integers in $\mathbb{Q}(\sqrt{D})$.
(7) Use sage to find the minimal polynomial of $\frac{(\sqrt[4]{2})^{3}}{2}+\frac{\sqrt[4]{2}}{2}+1$ over \mathbb{Q}. Is it an algebraic integer?

