MATH 748: HOMEWORK 1 (FINAL)

- (1) Milne 2-2, 2-4
- (2) In the polynomial ring $A = \mathbb{Q}[x, y]$, consider the ideal $\wp = (x^2 y^3)$. Show that \wp is a prime ideal, but that A/\wp is not integrally closed.
- (3) Find the minimal polynomials over \mathbb{Q} of $(1+i)\sqrt{3}$ and $i+\sqrt{3}$.
- (4) Is $\frac{3+2\sqrt{6}}{1-\sqrt{6}}$ an algebraic integer? What about $\frac{\sqrt{5}}{\sqrt{2}}$? $\frac{\sqrt{3}+\sqrt{7}}{2}$? $\frac{1+\sqrt[3]{10}+\sqrt[3]{100}}{3}$?
- (5) Show that the quadratic (i.e. degree 2) extensions of \mathbb{Q} are exactly $\mathbb{Q}(\sqrt{D})$ for square-free integers $D \neq 0, 1$,
- (6) For every square-free integer $D \neq 0, 1$, find the ring of algebraic integers in $\mathbb{Q}(\sqrt{D})$.
- (7) Use sage to find the minimal polynomial of $\frac{(\sqrt[4]{2})^3}{2} + \frac{\sqrt[4]{2}}{2} + 1$ over \mathbb{Q} . Is it an algebraic integer?