Homework 11

Due Friday, May 5 at 10pm. Please upload a legible pdf to Gradescope.

You may work together, but the solutions must be written up in your own words.

refer to Brown and Churchill, Ninth Edition

Hand in:

94 # 5, # 6 (a) only

Additional #1 Prove that there does not exists a conformal map from \mathbb{C} to the unit disc $\{|z| < 1\}$. Hint: Liouville.

 $\frac{\text{Additional } \#2}{\text{Let } f,g \text{ be fractional linear transformations}}$

$$f(z) = \frac{az+b}{cz+d} \quad g(z) = \frac{Az+B}{Cz+D}$$

Relate the fractional linear transformation $f \circ g$ to the matrix product $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} A & B \\ C & D \end{pmatrix}$.

Additional #2

Let D be the interior of the closed contour formed by C_1 = the left half of the unit circle $\{e^{i\theta}|\pi/2 \le \theta \le 3\pi/2\}$ and C_2 = the line segment between -i and i.

- a) Find a Fractional Linear Transofrmation f(z) such that f(i) = 0 and $\lim_{z \to -i} f(z) = \infty$. There are many correct answers.
- b) f(D) will be the region between two rays $re^{i\theta_0}$ and $re^{i\theta_1}$ through the origin. Identify θ_0 and θ_1 .
- c) By composing an analytic branch of log and f, and manipulating the imaginary part of the composition, describe a harmonic function on D with limit 1 on C_1 and 2 on C_2 . No need for an explicit formula.

Recommended, but don't hand in:

Let D be a simply connected domain which does not contain 0, and let C be a closed contour in D. Prove that the winding number of C is 0. Hint: Show that there is a continuous branch of log on D.