Lecture 22, 4/12/22Material corresponds to Ross §33.

Properties of Integrals

Let $f : [a, b] \to \mathbb{R}$ be a function.

Theorem

- a) If f is monotone, f is integrable.
- b) If f is continuous, f is integrable.

Let $f, g : [a, b] \to \mathbb{R}$ be integrable.

Theorem (linearity)

- a) Let $c \in \mathbb{R}$. Then cf is integrable and $\in_a^b cf = f \int_a^b f$.
- b) f + g is integrable and $\int_a^b (f + g) = \int_a^b f + \int_a^b g$.

Theorem (order)

- a) If $f(x) \leq g(x)$ for all $x \in [a, b]$ then $\int_a^b f \leq \int_a^b g$.
- b) |f| is integrable and $\left|\int_{a}^{b} f\right| \leq \int_{a}^{b} |f|$.
- c) If f is continuous, $f(x) \ge 0$ for all $x \in [a, b]$, and $\int_a^b f = 0$ then f(x) = 0 for all $x \in [a, b]$.

Theorem Let $f : [a, b] \to \mathbb{R}$ be a function and let $c \in (a, b)$. If $f : [a, c] \to \mathbb{R}$ and $f : [c, b] \to \mathbb{R}$ are integrable then $f : [a, b] \to \mathbb{R}$ is integrable and

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$$

Theorem Let $f, g : [a, b] \to \mathbb{R}$ be functions. If f is integrable and f(x) = g(x) for all $x \in [a, b] \setminus S$, where S is finite, then g is integrable and $\int_a^b f = \int_a^b g$.

Definition

1. $f:[a,b] \to \mathbb{R}$ is **piecewise monotone** if it is bounded and there exists a partition

$$P = \{a = t_0 < t_1 < \dots < t_n = b\}$$

of [a, b] such that $f : (t_{k-1}, t_k) \to \mathbb{R}$ is monotone for all k = 1, ..., n.

2. $f:[a,b] \to \mathbb{R}$ is **piecewise continuous** if there exists a partition

$$P = \{a = t_0 < t_1 < \dots < t_n = b\}$$

of [a, b] such that $f: (t_{k-1}, t_k) \to \mathbb{R}$ is uniformly continuous for all k = 1, ..., n.

Theorem A piecewise monotone or piecewise continuous function is integrable.