Lecture 6, 2/3/22Material corresponds to Ross $\S9 - 10$.

Limit Theorems

Theorem If $s_n \to s$ and $t_n \to t$ then s = t

Limit Theorems, Ross 9.2-9.6 Let $s_n \to s$ and $t_n \to t$ in \mathbb{R} . Then: 1. For all $k \in \mathbb{R}$, $ks_n \to ks$. 2. $s_n + t_n \rightarrow s + t$. 3. $s_n t_n \rightarrow st$. 4. If $s_n \neq 0$ for all $n \in \mathbb{N}$ and $s \neq 0$ then $1/s_n \to 1/s$ and $t_n/s_n \to t/s$.

Definition A sequence (s_n) is **bounded** if its set of values $\{s_n\}$ is bounded.

Theorem If $s_n \to s$ then $\{s_n\}$ is bounded.

Theorem Let $a, b \in \mathbb{R}$. If $a \leq s_n \leq b$ for all $n \in \mathbb{N}$ and $s_n \to s$ then $a \leq s \leq b$.

Theorem (Squeeze Theorem) If $a_n \leq s_n \leq b_n$ for all $n \in \mathbb{N}$, $a_n \to s$, and $b_n \to s$ then $s_n \to s$.

Important Limits, Ross 9.7

- 1. If p > 0, $\lim_{n \to \infty} \frac{1}{n^p} = 0$ 2. If |a| < 1, $\lim_{n \to \infty} a^n = 0$ 3. $n^{1/n} \to 1$

- 4. If a > 0, $\lim_{n \to \infty} a^{1/n} = 1$

Monotone Sequences

Defenition Let (s_n) be a sequence in \mathbb{R} .

- 1. (s_n) is increasing if $s_n \leq s_{n+1}$ for all $n \in \mathbb{N}$.
- 2. (s_n) is **decreasing** if $s_n \ge s_{n+1}$ for all $n \in \mathbb{N}$.
- 3. (s_n) is **monotone** if it is increasing or decreasing.

Theorem A bounded monotone sequence converges. If (s_n) is bounded and increasing (or decreasing) and $s_n \to s$ then $s_n \leq s$ (or $s_n \geq s$) for all $n \in \mathbb{N}$.

Tails

Definition Let (s_n) be a sequence. A **tail** of (s_n) is a set of the form

$$T_n = \{s_n | n > N\}$$

for some $N \in \mathbb{R}$.

Fact $s_n \to s$ if and only if for each $\epsilon > 0$ there exists $N \in \mathbb{R}$ such that $T_N \subset (s - \epsilon, s + \epsilon)$.