Lecture 3, 1/25/22

Material corresponds to Ross §4, and the end of §3.

Fact: Let $S \subseteq \mathbb{R}$ have a supremum and let $a \in \mathbb{R}$ (a need not be in S). If $a < \sup S$ then there exists $r \in S$ such that $a < r \le \sup S$.

Completeness Axoim If $S \subset \mathbb{R}$ is nonempty and bounded above then S has a supremum.

Corollary If $S \subset \mathbb{R}$ is nonempty and bounded below then S has an infimum.

Archimedean Principle Let $a \in \mathbb{R}$. Then there exists $n \in \mathbb{N}$ such that a < n.

Denseness of \mathbb{Q} Let $a, b \in \mathbb{R}$, a < b. Then there exists $r \in \mathbb{Q}$ such that a < r < b.

Denseness of irrational numbers Let $a, b \in \mathbb{R}$, a < b. Then there exists $r \notin \mathbb{Q}$ such that a < r < b.

Absolute Value

Definition For each $a \in \mathbb{R}$, |a| = a if $a \ge 0$ and |a| = -a if a < 0.

Theorem

- 1. $|a| \ge 0$
- 2. |ab| = |a||b|
- 3. (Triangle inequality) $|a+b| \le |a| + |b|$

Useful facts

- \bullet $-|a| \le a \le |a|$
- $\bullet ||a+b| \ge |a| |b|$
- If c > 0

|a-b| < c if and only if b-c < a < b+c if and only if $a \in (b-c,b+c)$