Lecture 2, 1/20/22Material corresponds to Ross §4.

Completeness

Let $S \subseteq \mathbb{R}$.

 $r_0 \in S$ is the **maximum** of S if $r_0 \in S$ and $r \leq r_0$ for all $r \in S$. (write $r_0 = \max S$) $r_0 \in S$ is the **minimum** of S if $r_0 \in S$ and $r_0 \leq r$ for all $r \in S$. (write $r_0 = \min S$)

 $M \in \mathbb{R}$ is an **upper bound** for S if $r \leq M$ for all $r \in S$. $m \in \mathbb{R}$ is a **lower bound** for S if $m \leq r$ for all $r \in S$.

- S is **bounded above** if it has an upper bound.
- S is **bounded below** if it has a lower bound.
- S is **bounded** if it is bounded above and below.
- $r_0 \in \mathbb{R}$ is the **supremum** of S if it is the least upper bound of S. (write $r_0 = \sup S$) $\iff r_0$ is an upper bound for S and if r is another upper bound for S then $r_0 \leq r$. $\iff r_0 = \min\{r \in \mathbb{R} \mid r \text{ is an upper bound for } S\}.$
- $r_0 \in S$ is the **infimum** of S if it is the greatest lower bound of S. (write $r_0 = \inf S$) $\iff r_0$ is a lower bound for S and if r is another lower bound for S then $r \leq r_0$. $\iff r_0 = \max\{r \in \mathbb{R} \mid r \text{ is a lower bound for } S\}.$
- If $r_0 = \max S$ then $r_0 = \sup S$. If $r_0 = \min S$ then $r_0 = \inf S$.

Completeness Axoim If $S \subset \mathbb{R}$ is nonempty and bounded above then S has a supremum.

Corollary If $S \subset \mathbb{R}$ is nonempty and bounded below then S has an infimum.

Interval Notation

$$\begin{split} & [a,b] = \{r \in \mathbb{R} \mid a \le r \le b\} \\ & (a,b) = \{r \in \mathbb{R} \mid a < r < b\} \\ & (a,b) = \{r \in \mathbb{R} \mid a < r \le b\} \\ & [a,b) = \{r \in \mathbb{R} \mid a \le r < b\} \\ & [a,\infty) = \{r \in \mathbb{R} \mid a \le r\} \\ & (a,\infty) = \{r \in \mathbb{R} \mid a \le r\} \\ & (-\infty,b] = \{r \in \mathbb{R} \mid r \le b\} \\ & (-\infty,b) = \{r \in \mathbb{R} \mid r < b\} \end{split}$$